CAREER: Singularities in fluids
职业:流体中的奇点
基本信息
- 批准号:2243205
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Innumerable hydrodynamical phenomena are described in terms of singularities, of which perhaps the most well-known is the formation of shock waves resulting from a disturbance in a medium such as air or water moving faster than the local speed of sound. The goal of this project is to create a broad program for both research and pedagogical activities centered around the study of singularities in fluids. The award will provide research opportunities and training for postdoctoral scholars and will leverage its research elements to design projects suitable for undergraduate students. The project will also aim at producing a foundational graduate textbook on shock waves in compressible fluids.The research component is split into three projects: formation and development of shock waves, radial implosions from smooth initial data, and self-similar blow-up via neural networks. Building on previous work of the PI and his collaborators, the aim of the first project will be to provide the first full description of shock wave formation and development for the multi-dimensional compressible Euler equations. The second project involves further developing prior work on self-similar imploding solutions for isentropic compressible flows to investigate the possibility of new types of singularities. The third project involves utilizing physically informed neural networks to search for new forms of singularities in fluid, whose existence will be made rigorous through the aid of computer assisted proofs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非线性流体动力学现象是用奇点来描述的,其中最著名的可能是由于空气或水等介质中的扰动比当地声速更快而形成的冲击波。这个项目的目标是创建一个广泛的研究和教学活动围绕着研究流体中的奇点。该奖项将为博士后学者提供研究机会和培训,并将利用其研究元素设计适合本科生的项目。该项目还旨在编写一本关于可压缩流体中冲击波的基础研究生教科书。研究部分分为三个项目:冲击波的形成和发展,光滑初始数据的径向内爆,以及通过神经网络的自相似爆破。在PI及其合作者以前工作的基础上,第一个项目的目标是为多维可压缩欧拉方程提供冲击波形成和发展的第一个完整描述。第二个项目涉及进一步发展等熵可压缩流的自相似内爆解的先前工作,以研究新类型奇点的可能性。第三个项目涉及利用物理信息神经网络来寻找流体中的新形式奇点,其存在将通过计算机辅助证明的帮助进行严格验证。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Asymptotic Self-Similar Blow-Up Profile for Three-Dimensional Axisymmetric Euler Equations Using Neural Networks
使用神经网络的三维轴对称欧拉方程的渐近自相似放大剖面
- DOI:10.1103/physrevlett.130.244002
- 发表时间:2023
- 期刊:
- 影响因子:8.6
- 作者:Wang, Y.;Lai, C.-Y.;Gómez-Serrano, J.;Buckmaster, T.
- 通讯作者:Buckmaster, T.
Smooth self-similar imploding profiles to 3D compressible Euler
- DOI:10.1090/qam/1661
- 发表时间:2023-01
- 期刊:
- 影响因子:0.8
- 作者:T. Buckmaster;Gonzalo Cao-Labora;Javier G'omez-Serrano
- 通讯作者:T. Buckmaster;Gonzalo Cao-Labora;Javier G'omez-Serrano
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tristan Buckmaster其他文献
Tristan Buckmaster的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tristan Buckmaster', 18)}}的其他基金
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Analytic Methods in Hydrodynamic and Wave Turbulence
流体动力学和波浪湍流的分析方法
- 批准号:
2242677 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Analytic Methods in Hydrodynamic and Wave Turbulence
流体动力学和波浪湍流的分析方法
- 批准号:
1900149 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Analytic Methods in Hydrodynamic and Wave Turbulence
流体动力学和波浪湍流的分析方法
- 批准号:
1820764 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Analytic Methods in Hydrodynamic and Wave Turbulence
流体动力学和波浪湍流的分析方法
- 批准号:
1600868 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似海外基金
Conference: Resolution of Singularities, Valuation Theory and Related Topics
会议:奇点的解决、估值理论及相关主题
- 批准号:
2422557 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Deformation of singularities through Hodge theory and derived categories
通过霍奇理论和派生范畴进行奇点变形
- 批准号:
DP240101934 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Discovery Projects
Clocks and singularities in quantum gravity and quantum cosmology
量子引力和量子宇宙学中的时钟和奇点
- 批准号:
2907441 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Studentship
Interaction of singularities and number theory
奇点与数论的相互作用
- 批准号:
23H01070 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Automatic classification and recognition of singularities and its application
奇点自动分类识别及其应用
- 批准号:
23K03123 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of singularities of extremal Riemann surfaces and Klein surfaces in moduli spaces
模空间中极值黎曼曲面和克莱因曲面的奇异性分析
- 批准号:
23K03138 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis on delta function type singularities in nonlinear heat equations
非线性热方程中δ函数型奇点分析
- 批准号:
23K03161 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Canonical Singularities, Generalized Symmetries, and 5d Superconformal Field Theories
正则奇点、广义对称性和 5d 超共形场论
- 批准号:
EP/X01276X/1 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Fellowship
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant














{{item.name}}会员




