H-Principle and Fluid Dynamics

H 原理和流体动力学

基本信息

  • 批准号:
    1900157
  • 负责人:
  • 金额:
    $ 21.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2019-09-30
  • 项目状态:
    已结题

项目摘要

Fluid dynamics is the branch of physics that studies the motion of fluids, that are liquids and gases, and it uses sophisticated mathematics to describe the motions, make useful predictions and find efficient ways to solve practical problems in science and engineering. While much of the theory behind such descriptions are rooted in the physics of the nineteenth century, due to the complexity of the mathematical objects involved in them many aspects are still poorly understood. Two problems are of primary interest in this research project. (1) In theory the mathematical models should determine the future evolution of the fluid when the forces acting on it and its initial status are known; nonetheless a rigorous mathematical proof of this expectation is missing for the simplest and most popular models. In layman terms the reason is that we do not understand "how and why" fluid motions which are apparently "smooth and calm" evolve into "chaotic and turbulent" ones. (2) Even if we expect the complete predictability of the models, nonetheless the computations are often so complex that become practically impossible. For this reason scientists have developed statistical descriptions of the motions, which allow to infer their typical behavior without resorting to heavy computations. The rigorous justification of these statistical descriptions from the primary mathematical models describing the motions is still a big challenge of modern science.This project is concerned with some of the most popular systems of partial differential equations used in the mathematics of fluid dynamics, the Euler and Navier-Stokes equations. The three main themes of the project are the following. (A) The convergence of solutions of the Navier-Stokes equations to the Euler equations when the viscosity of the fluid goes to zero. A primary concern is a tenet of the theory of turbulence that the rate of energy dissipation is, for fluid motions of a fixed macroscopic scale, independent of the viscosity. The recent resolution of a well-known conjecture of Lars Onsager on the energy dissipation for low regularity solutions of Euler could pave the way to a mathematical proof of the existence of such anomalous dissipation. (B) Regularity and singularity of the solutions. One of the celebrated Millennium prize problems asks whether smooth solutions of the Navier-Stokes equations develop singularities in finite time. The Navier-Stokes equations can be "embedded" in a one-parameter family of models where the parameter describes the regularizing strength of the viscous term. While some of the known results concerning the Navier-Stokes equations have been extended to the latter family, there is still quite a few which lack a suitable counterpart. (C) Rigidity and flexibility of the isometric embeddings of Riemannian manifolds. The recent resolution of the Onsager conjecture mentioned at point (A) is based on the discovery of the project leader and Laszlo Szekelyhidi Jr. of unexpected connections with a classical problem in Riemannian geometry, solved by John Nash in the fifties. The counterpart of the Onsager conjecture in the geometric framework is however not yet fully solved.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
流体动力学是物理学的一个分支,研究液体和气体的运动,它使用复杂的数学来描述运动,做出有用的预测,并找到解决科学和工程中实际问题的有效方法。虽然这些描述背后的许多理论都植根于19世纪的物理学,但由于其中涉及的数学对象的复杂性,许多方面仍然鲜为人知。这项研究项目主要涉及两个问题。(1)在理论上,当作用在流体上的力和它的初始状态已知时,数学模型应该确定流体的未来演变;然而,对于最简单和最流行的模型,缺乏对这一期望的严格的数学证明。用外行人的话来说,原因是我们不明白“如何以及为什么”表面上“平稳和平静”的流动运动演变成“混乱和动荡”的运动。(2)即使我们期望模型的完全可预测性,但计算往往是如此复杂,以至于实际上变得不可能。出于这个原因,科学家们已经开发出对这些运动的统计描述,这样就可以在不进行繁重计算的情况下推断出它们的典型行为。从描述运动的主要数学模型中严格地证明这些统计描述仍然是现代科学的一大挑战。这个项目涉及流体动力学数学中使用的一些最流行的偏微分方程组,即欧拉方程和纳维斯托克斯方程。该项目的三个主要主题如下。(A)当流体的粘性为零时,N-S方程的解与欧拉方程的解的收敛。主要关注的是湍流理论的一个原则,即对于固定宏观尺度的流体运动,能量耗散率与粘性无关。最近Lars Onsager关于Euler低正则解的能量耗散的一个著名猜想的解决可能为这种反常耗散的存在的数学证明铺平道路。(B)解的正则性和奇性。著名的千禧年奖问题之一是,纳维-斯托克斯方程的光滑解是否会在有限时间内产生奇点。Navier-Stokes方程可以“嵌入”在一个单参数模型族中,其中参数描述粘性项的正则化强度。虽然关于Navier-Stokes方程的一些已知结果已经推广到后一族,但仍然有相当多的结果缺乏合适的对应物。(C)黎曼流形等距嵌入的刚性和柔性。最近在(A)点提到的Onsager猜想的解决方案是基于项目负责人和Laszlo Szekelyidi Jr.的发现。与一个经典的黎曼几何问题的意想不到的联系,约翰·纳什在50年代解决了这个问题。然而,几何框架中Onsager猜想的对应物尚未完全解决。该奖项反映了NSF的法定使命,并已通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Camillo De Lellis其他文献

Continuous dissipative Euler flows and a conjecture of Onsager
连续耗散欧拉流和 Onsager 猜想
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Camillo De Lellis
  • 通讯作者:
    Camillo De Lellis
Ill-posedness for Bounded Admissible Solutions of the 2-dimensional p-system
二维 p 系统有界容许解的不适定性
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Camillo De Lellis
  • 通讯作者:
    Camillo De Lellis
The size of the singular set of area-minimizing currents
面积最小化电流的奇异集的大小
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Camillo De Lellis
  • 通讯作者:
    Camillo De Lellis
h -Principle and Rigidity for C 1, α Isometric Embeddings
h - C 1、α 等距嵌入的原理和刚性
  • DOI:
    10.1007/978-3-642-25361-4_5
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    S. Conti;Camillo De Lellis;L. Székelyhidi
  • 通讯作者:
    L. Székelyhidi
Density lower bound estimates for local minimizers of the 2d Mumford–Shah energy
  • DOI:
    10.1007/s00229-012-0601-y
  • 发表时间:
    2013-02-15
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Camillo De Lellis;Matteo Focardi
  • 通讯作者:
    Matteo Focardi

Camillo De Lellis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Camillo De Lellis', 18)}}的其他基金

FRG: Collaborative Research: New Challenges in Geometric Measure Theory
FRG:协作研究:几何测度理论的新挑战
  • 批准号:
    1854147
  • 财政年份:
    2019
  • 资助金额:
    $ 21.29万
  • 项目类别:
    Standard Grant
H-Principle and Fluid Dynamics
H 原理和流体动力学
  • 批准号:
    1946175
  • 财政年份:
    2019
  • 资助金额:
    $ 21.29万
  • 项目类别:
    Continuing Grant

相似国自然基金

随机进程代数模型的Fluid逼近问题研究
  • 批准号:
    61472343
  • 批准年份:
    2014
  • 资助金额:
    75.0 万元
  • 项目类别:
    面上项目
ICF中电子/离子输运的PIC-FLUID混合模拟方法研究
  • 批准号:
    11275269
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目

相似海外基金

Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
  • 批准号:
    10090067
  • 财政年份:
    2024
  • 资助金额:
    $ 21.29万
  • 项目类别:
    Collaborative R&D
Fluid dynamics of underground hydrogen storage
地下储氢的流体动力学
  • 批准号:
    DE240100755
  • 财政年份:
    2024
  • 资助金额:
    $ 21.29万
  • 项目类别:
    Discovery Early Career Researcher Award
CRII: OAC: Dynamically Adaptive Unstructured Mesh Technologies for High-Order Multiscale Fluid Dynamics Simulations
CRII:OAC:用于高阶多尺度流体动力学仿真的动态自适应非结构​​化网格技术
  • 批准号:
    2348394
  • 财政年份:
    2024
  • 资助金额:
    $ 21.29万
  • 项目类别:
    Standard Grant
Moving away from aeration – utilising computational fluid dynamics modelling ofmechanical mixing within an industrial scale nature-based wastewater treatment system
摆脱曝气 — 在工业规模的基于自然的废水处理系统中利用机械混合的计算流体动力学模型
  • 批准号:
    10092420
  • 财政年份:
    2024
  • 资助金额:
    $ 21.29万
  • 项目类别:
    Collaborative R&D
The influences of size reduction of a Total Artificial Heart on fluid dynamics and blood compatibility.
全人工心脏尺寸减小对流体动力学和血液相容性的影响。
  • 批准号:
    2903462
  • 财政年份:
    2024
  • 资助金额:
    $ 21.29万
  • 项目类别:
    Studentship
ERI: Unraveling Multi-Phase Ink Shear-Thinning Flow Mechanism in Direct Ink Writing Process: Computational Fluid Dynamics Simulation and In-Situ Experimental Verification
ERI:揭示直接墨水书写过程中的多相墨水剪切稀化流动机制:计算流体动力学模拟和原位实验验证
  • 批准号:
    2347497
  • 财政年份:
    2024
  • 资助金额:
    $ 21.29万
  • 项目类别:
    Standard Grant
CAREER: Investigating Fluid Surface Dynamics in Constrained Geometries
职业:研究受限几何形状中的流体表面动力学
  • 批准号:
    2340259
  • 财政年份:
    2024
  • 资助金额:
    $ 21.29万
  • 项目类别:
    Continuing Grant
Fluid Dynamics - understanding fluid dynamics to improve our lives
流体动力学 - 了解流体动力学以改善我们的生活
  • 批准号:
    2882596
  • 财政年份:
    2023
  • 资助金额:
    $ 21.29万
  • 项目类别:
    Studentship
Frictional fluid dynamics of granular flows; uniting experiments, simulation and theory
颗粒流的摩擦流体动力学;
  • 批准号:
    EP/X028771/1
  • 财政年份:
    2023
  • 资助金额:
    $ 21.29万
  • 项目类别:
    Fellowship
Numerical study on quantum fluid dynamics in micro space
微空间量子流体动力学数值研究
  • 批准号:
    23KJ1832
  • 财政年份:
    2023
  • 资助金额:
    $ 21.29万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了