RUI: Mesoscale Methods for Electrochemistry: Confronting the Complexity of Ion and Electron Transfer
RUI:电化学的介观方法:面对离子和电子转移的复杂性
基本信息
- 批准号:1900423
- 负责人:
- 金额:$ 34.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project AbstractProfessor Ryan Jorn of Villanova University is supported by an award from the Chemical Theory, Models, and Computational Methods program in the Division of Chemistry. Professor Jorn develops methods to study the transport of electrons and ions at electrode surfaces, with particular focus on the reactive interfaces present in rechargeable batteries. While rechargeable batteries are essential to powering personal electronics, they may also play a significant role in reducing carbon emissions by powering cars. Several technical challenges to energy storage for transportation remain, including loss of storage capacity over time and poor rates of recharge. These challenges are intimately connected to the transport of ions and electrons at the molecular level. Unfortunately, charge transport mechanisms are poorly understood. Few experiments can access sufficiently small length and time scales at the electrode surface. Most computer simulations are also inadequate to describe the multiple length scales at work during battery operation. Studying the behavior of electrons requires using quantum mechanics to properly treat their wave-like nature. Such calculations, however, are only feasible for a relatively small numbers of atoms. Accurately capturing the evolution of the interface through which the electron travels requires accounting for thousands of atoms for very long times. Professor Jorn's research uses a multi-scale approach to study these problems. He and his coworkers compute molecular forces from quantum mechanics. They then use these forces to describe the classical motion of ions and molecules at the electrode surface. His work at Villanova University relies heavily on the involvement of undergraduate students who are trained on state-of-the-art simulation software and high-performance computing platforms. Professor Jorn also uses his research to introduce first generation and under-represented college students to computational modeling through the Center for Access, Success, and Advancement at Villanova University. Molecular simulations of electrochemical interfaces have previously relied on ab initio molecular dynamics (AIMD) to study chemical reactions, and classical molecular dynamics (CMD) to explore solvation phenomena. Regarding the former, limitations on the time scales of simulation render description of transport phenomena intractable. On the other hand, it is widely recognized that "off-the-shelf" force fields used in CMD fail to accurately capture polarization effects and interface structure. Professor Jorn's research addresses these deficiencies by employing a force-matching approach that uses information from quantum AIMD simulations to train classical molecular force fields. His research group explores how best to build force fields at interfaces by exploring different functional forms for intermolecular interactions and sampling high-energy configurations. In addition to developing force fields for interfacial processes, Professor Jorn's work includes developing enhanced sampling methods to describe the exchange of species across the electrolyte/electrode interface. By using a unique combination of replica exchange umbrella sampling and collective variables, his approach allows for the study of single defect migration as well as correlated mechanisms involving ion "knock-off". Regarding the motion of electrons, Professor Jorn's work employs a Newns-Anderson Hamiltonian coupled with ensemble scattering theory to describe the classical force on molecules during reduction. In adding electron transfer to classical simulations, Professor Jorn is developing a framework to study electrochemistry at a molecular level.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Villanova大学的Project Abstract Professor Ryan Jorn得到了化学理论,模型和计算方法计划的奖项的支持。 Jorn教授开发了研究电子和离子在电极表面的运输的方法,特别关注可充电电池中存在的反应性接口。 虽然可充电电池对于为个人电子设备供电至关重要,但它们也可能在减少汽车供电碳排放方面发挥重要作用。 存储能源的几个技术挑战仍然存在,包括随着时间的推移损失存储容量和充电率较差。 这些挑战与分子水平的离子和电子的运输密切相关。 不幸的是,电荷运输机制知之甚少。 很少有实验可以在电极表面访问足够小的长度和时间尺度。 大多数计算机模拟也不足以描述电池操作过程中工作中的多个长度尺度。 研究电子的行为需要使用量子力学才能正确处理其波浪样性质。 但是,这种计算仅对于相对较少的原子可行。 准确地捕获电子传播的界面的演变,需要很长时间考虑数千个原子。 杰恩教授的研究使用多尺度方法来研究这些问题。 他和他的同事通过量子力学计算分子力。 然后,他们使用这些力来描述离子和分子在电极表面的经典运动。 他在维拉诺瓦大学(Villanova University)的工作在很大程度上依赖于接受过最先进的模拟软件和高性能计算平台培训的本科生的参与。 杰恩教授还利用他的研究介绍了第一代和代表性不足的大学生,通过维拉诺瓦大学的访问,成功和进步中心进行计算建模。电化学界面的分子模拟先前依赖于从头算分子动力学(AIMD)来研究化学反应和经典分子动力学(CMD)来探索溶剂化现象。 关于前者,对模拟时间尺度的局限性渲染了传输现象的描述。 另一方面,广泛认识到CMD中使用的“现成”力场无法准确捕获极化效应和界面结构。杰恩教授的研究通过采用力量匹配方法来解决这些缺陷,该方法使用量子AIMD模拟的信息来训练经典的分子力场。 他的研究小组探索了如何通过探索不同分子间相互作用和对高能配置的不同功能形式来最好地在界面上建立力场。 除了开发界面过程的力场外,杰恩教授的工作还包括开发增强的抽样方法来描述在电解质/电极界面上的物种交换。 通过使用副本交换伞采样和集体变量的独特组合,他的方法可以研究单个缺陷迁移以及涉及离子“仿制”的相关机制。 关于电子的运动,杰恩教授的作品采用了纽恩斯·安德森汉密尔顿人,再加上合奏散射理论,以描述还原过程中分子的经典力量。 在将电子转移添加到经典模拟中时,Jorn教授正在开发一个以分子级别研究电化学的框架。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估来评估的支持标准。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ion Association and Electrolyte Structure at Surface Films in Lithium-Ion Batteries
锂离子电池表面膜的离子缔合和电解质结构
- DOI:10.1021/acs.jpcc.1c00393
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Pinca, Justin R.;Duborg, William G.;Jorn, Ryan
- 通讯作者:Jorn, Ryan
Investigating the Mechanism of Lithium Transport at Solid Electrolyte Interphases
- DOI:10.1021/acs.jpcc.0c03018
- 发表时间:2020-07-30
- 期刊:
- 影响因子:3.7
- 作者:Jorn, Ryan;Raguette, Lauren;Peart, Shaniya
- 通讯作者:Peart, Shaniya
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Minbiole其他文献
Release trial of captive-bred variable harlequin frogs Atelopus varius shows that frogs disperse rapidly, are difficult to recapture and do not readily regain skin toxicity
圈养繁殖的变异丑角蛙 Atelopus varius 的释放试验表明,青蛙分散迅速,难以重新捕获,并且不易恢复皮肤毒性
- DOI:
10.1017/s0030605323001254 - 发表时间:
2023 - 期刊:
- 影响因子:2.7
- 作者:
Blake Klocke;Orlando Garcés;Elliot Lassiter;Jorge Guerrel;Andreas Hertz;Estefany Illueca;Eric Klaphake;Luke Linhoff;Kevin Minbiole;Heidi Ross;Julia A. Tasca;D. Woodhams;B. Gratwicke;Roberto Ibáñez - 通讯作者:
Roberto Ibáñez
Kevin Minbiole的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin Minbiole', 18)}}的其他基金
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318830 - 财政年份:2023
- 资助金额:
$ 34.77万 - 项目类别:
Continuing Grant
Collaborative Research: Structure and Dynamics of Solvate Ionic Liquids: A Mixed Experimental and Computational Approach
合作研究:溶剂化离子液体的结构和动力学:混合实验和计算方法
- 批准号:
2154505 - 财政年份:2022
- 资助金额:
$ 34.77万 - 项目类别:
Standard Grant
MRI: Acquisition of a 500 MHz Nuclear Magnetic Resonance (NMR) Spectrometer to Enhance Undergraduate Research and Teaching at a Primarily Undergraduate Institution
MRI:采购 500 MHz 核磁共振 (NMR) 波谱仪,以加强本科院校的本科研究和教学
- 批准号:
1827930 - 财政年份:2018
- 资助金额:
$ 34.77万 - 项目类别:
Standard Grant
Collaborative Research: Macroevolution of a group of plant secondary defense compounds (pyrrolizidine alkaloids) in the dogbane and milkweed flowering plant family (Apocynaceae)
合作研究:罗布麻和马利筋开花植物家族(夹竹桃科)中一组植物二级防御化合物(吡咯里西啶生物碱)的宏观进化
- 批准号:
1655660 - 财政年份:2017
- 资助金额:
$ 34.77万 - 项目类别:
Standard Grant
Collaborative Research: Host and Pathogen Interactions in the Amphibian Disease, Chytridiomycosis
合作研究:两栖动物疾病壶菌病中宿主和病原体的相互作用
- 批准号:
1557592 - 财政年份:2016
- 资助金额:
$ 34.77万 - 项目类别:
Continuing Grant
Dimensions: Collaborative Research: Diversity and Symbiosis: Examining the Taxonomic, Genetic, and Functional Diversity of Amphibian Skin Microbiota
维度:合作研究:多样性与共生:检查两栖动物皮肤微生物群的分类、遗传和功能多样性
- 批准号:
1136662 - 财政年份:2011
- 资助金额:
$ 34.77万 - 项目类别:
Standard Grant
RUI: A Cyclopropane Fragmentation Approach to Heterocycle Synthesis
RUI:杂环合成的环丙烷裂解方法
- 批准号:
0543137 - 财政年份:2006
- 资助金额:
$ 34.77万 - 项目类别:
Standard Grant
相似国自然基金
介观尺度下变压器油中颗粒运动模型构建及求解方法研究
- 批准号:52367001
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
金属-空气-金属微观界面中的介观敏感机理与跨尺度传感方法研究
- 批准号:52305572
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
隐式等权重变分粒子平滑方法在亚中尺度过程预报中的应用研究
- 批准号:42306040
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
页岩气藏注CO2数值模拟中孔隙尺度模型与连续模型耦合方法研究
- 批准号:52304051
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多尺度中智数据的粒计算理论、方法及应用研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
BRAIN CONNECTS: Center for Mesoscale Connectomics
大脑连接:中尺度连接组学中心
- 批准号:
10664257 - 财政年份:2023
- 资助金额:
$ 34.77万 - 项目类别:
Neural Recording and Simulation Tools to Address the Mesoscale Gap
解决中尺度差距的神经记录和模拟工具
- 批准号:
10739544 - 财政年份:2023
- 资助金额:
$ 34.77万 - 项目类别:
Towards the identification of a mesoscale neural systems logic underlying innate behaviors
识别先天行为背后的中尺度神经系统逻辑
- 批准号:
10734660 - 财政年份:2023
- 资助金额:
$ 34.77万 - 项目类别:
本邦における抗うつ薬による性機能障害の評価方法と薬理学的対処法の開発
日本抗抑郁药引起性功能障碍的评估方法和药物治疗的进展
- 批准号:
22K15769 - 财政年份:2022
- 资助金额:
$ 34.77万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Comprehensively map the mesoscale thalamic circuits that route subcortical inputs to frontal cortex
全面绘制将皮层下输入路由至额叶皮层的中尺度丘脑回路
- 批准号:
10546512 - 财政年份:2022
- 资助金额:
$ 34.77万 - 项目类别: