RUI: Mesoscale Methods for Electrochemistry: Confronting the Complexity of Ion and Electron Transfer

RUI:电化学的介观方法:面对离子和电子转移的复杂性

基本信息

  • 批准号:
    1900423
  • 负责人:
  • 金额:
    $ 34.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Project AbstractProfessor Ryan Jorn of Villanova University is supported by an award from the Chemical Theory, Models, and Computational Methods program in the Division of Chemistry. Professor Jorn develops methods to study the transport of electrons and ions at electrode surfaces, with particular focus on the reactive interfaces present in rechargeable batteries. While rechargeable batteries are essential to powering personal electronics, they may also play a significant role in reducing carbon emissions by powering cars. Several technical challenges to energy storage for transportation remain, including loss of storage capacity over time and poor rates of recharge. These challenges are intimately connected to the transport of ions and electrons at the molecular level. Unfortunately, charge transport mechanisms are poorly understood. Few experiments can access sufficiently small length and time scales at the electrode surface. Most computer simulations are also inadequate to describe the multiple length scales at work during battery operation. Studying the behavior of electrons requires using quantum mechanics to properly treat their wave-like nature. Such calculations, however, are only feasible for a relatively small numbers of atoms. Accurately capturing the evolution of the interface through which the electron travels requires accounting for thousands of atoms for very long times. Professor Jorn's research uses a multi-scale approach to study these problems. He and his coworkers compute molecular forces from quantum mechanics. They then use these forces to describe the classical motion of ions and molecules at the electrode surface. His work at Villanova University relies heavily on the involvement of undergraduate students who are trained on state-of-the-art simulation software and high-performance computing platforms. Professor Jorn also uses his research to introduce first generation and under-represented college students to computational modeling through the Center for Access, Success, and Advancement at Villanova University. Molecular simulations of electrochemical interfaces have previously relied on ab initio molecular dynamics (AIMD) to study chemical reactions, and classical molecular dynamics (CMD) to explore solvation phenomena. Regarding the former, limitations on the time scales of simulation render description of transport phenomena intractable. On the other hand, it is widely recognized that "off-the-shelf" force fields used in CMD fail to accurately capture polarization effects and interface structure. Professor Jorn's research addresses these deficiencies by employing a force-matching approach that uses information from quantum AIMD simulations to train classical molecular force fields. His research group explores how best to build force fields at interfaces by exploring different functional forms for intermolecular interactions and sampling high-energy configurations. In addition to developing force fields for interfacial processes, Professor Jorn's work includes developing enhanced sampling methods to describe the exchange of species across the electrolyte/electrode interface. By using a unique combination of replica exchange umbrella sampling and collective variables, his approach allows for the study of single defect migration as well as correlated mechanisms involving ion "knock-off". Regarding the motion of electrons, Professor Jorn's work employs a Newns-Anderson Hamiltonian coupled with ensemble scattering theory to describe the classical force on molecules during reduction. In adding electron transfer to classical simulations, Professor Jorn is developing a framework to study electrochemistry at a molecular level.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
维拉诺瓦大学的Ryan Jorn教授获得了化学系化学理论,模型和计算方法项目的奖项。 Jorn教授开发了研究电极表面电子和离子传输的方法,特别关注可充电电池中存在的反应界面。 虽然可充电电池对于为个人电子产品供电至关重要,但它们也可能通过为汽车供电在减少碳排放方面发挥重要作用。 用于运输的能源储存仍然存在一些技术挑战,包括随着时间的推移储存容量的损失和充电率低。 这些挑战与离子和电子在分子水平上的传输密切相关。 不幸的是,电荷传输机制知之甚少。 很少有实验能够在电极表面获得足够小的长度和时间尺度。 大多数计算机模拟也不足以描述电池运行期间工作的多个长度尺度。 研究电子的行为需要使用量子力学来正确处理它们的波动性质。 然而,这样的计算只适用于相对少量的原子。 准确地捕捉电子穿过的界面的演化需要在很长一段时间内考虑数千个原子。 Jorn教授的研究使用多尺度方法来研究这些问题。 他和他的同事计算 量子力学中的分子力 然后,他们使用这些力来描述电极表面的离子和分子的经典运动。 他在维拉诺瓦大学的工作在很大程度上依赖于本科生的参与,他们接受了最先进的仿真软件和高性能计算平台的培训。 Jorn教授还利用他的研究,通过维拉诺瓦大学的访问,成功和进步中心向第一代和代表性不足的大学生介绍计算建模。电化学界面的分子模拟以前依赖于从头算分子动力学(AIMD)来研究化学反应,以及经典分子动力学(CMD)来探索溶剂化现象。 关于前者,模拟的时间尺度上的限制,使运输现象的描述棘手。 另一方面,人们普遍认为,CMD中使用的“现成”力场无法准确捕获极化效应和界面结构。Jorn教授的研究通过采用一种力匹配方法来解决这些缺陷,该方法使用量子AIMD模拟的信息来训练经典分子力场。 他的研究小组通过探索分子间相互作用的不同功能形式和采样高能配置,探索如何最好地在界面上建立力场。 除了开发界面过程的力场外,Jorn教授的工作还包括开发增强的采样方法来描述电解质/电极界面上的物种交换。 通过使用一个独特的副本交换伞采样和集体变量的组合,他的方法允许研究单个缺陷迁移以及相关的机制,涉及离子“敲除”。 关于电子的运动,Jorn教授的工作采用Newns-Anderson Hamiltonian结合系综散射理论来描述还原过程中分子上的经典力。 Jorn教授在经典模拟中加入了电子转移,正在开发一个在分子水平上研究电化学的框架。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ion Association and Electrolyte Structure at Surface Films in Lithium-Ion Batteries
锂离子电池表面膜的离子缔合和电解质结构
  • DOI:
    10.1021/acs.jpcc.1c00393
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pinca, Justin R.;Duborg, William G.;Jorn, Ryan
  • 通讯作者:
    Jorn, Ryan
Investigating the Mechanism of Lithium Transport at Solid Electrolyte Interphases
  • DOI:
    10.1021/acs.jpcc.0c03018
  • 发表时间:
    2020-07-30
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Jorn, Ryan;Raguette, Lauren;Peart, Shaniya
  • 通讯作者:
    Peart, Shaniya
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Minbiole其他文献

Release trial of captive-bred variable harlequin frogs Atelopus varius shows that frogs disperse rapidly, are difficult to recapture and do not readily regain skin toxicity
圈养繁殖的变异丑角蛙 Atelopus varius 的释放试验表明,青蛙分散迅速,难以重新捕获,并且不易恢复皮肤毒性
  • DOI:
    10.1017/s0030605323001254
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Blake Klocke;Orlando Garcés;Elliot Lassiter;Jorge Guerrel;Andreas Hertz;Estefany Illueca;Eric Klaphake;Luke Linhoff;Kevin Minbiole;Heidi Ross;Julia A. Tasca;D. Woodhams;B. Gratwicke;Roberto Ibáñez
  • 通讯作者:
    Roberto Ibáñez

Kevin Minbiole的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kevin Minbiole', 18)}}的其他基金

Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
  • 批准号:
    2318830
  • 财政年份:
    2023
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Continuing Grant
Collaborative Research: Structure and Dynamics of Solvate Ionic Liquids: A Mixed Experimental and Computational Approach
合作研究:溶剂化离子液体的结构和动力学:混合实验和计算方法
  • 批准号:
    2154505
  • 财政年份:
    2022
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a 500 MHz Nuclear Magnetic Resonance (NMR) Spectrometer to Enhance Undergraduate Research and Teaching at a Primarily Undergraduate Institution
MRI:采购 500 MHz 核磁共振 (NMR) 波谱仪,以加强本科院校的本科研究和教学
  • 批准号:
    1827930
  • 财政年份:
    2018
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Standard Grant
Collaborative Research: Macroevolution of a group of plant secondary defense compounds (pyrrolizidine alkaloids) in the dogbane and milkweed flowering plant family (Apocynaceae)
合作研究:罗布麻和马利筋开花植物家族(夹竹桃科)中一组植物二级防御化合物(吡咯里西啶生物碱)的宏观进化
  • 批准号:
    1655660
  • 财政年份:
    2017
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Standard Grant
Collaborative Research: Host and Pathogen Interactions in the Amphibian Disease, Chytridiomycosis
合作研究:两栖动物疾病壶菌病中宿主和病原体的相互作用
  • 批准号:
    1557592
  • 财政年份:
    2016
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Continuing Grant
Dimensions: Collaborative Research: Diversity and Symbiosis: Examining the Taxonomic, Genetic, and Functional Diversity of Amphibian Skin Microbiota
维度:合作研究:多样性与共生:检查两栖动物皮肤微生物群的分类、遗传和功能多样性
  • 批准号:
    1136662
  • 财政年份:
    2011
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Standard Grant
RUI: A Cyclopropane Fragmentation Approach to Heterocycle Synthesis
RUI:杂环合成的环丙烷裂解方法
  • 批准号:
    0543137
  • 财政年份:
    2006
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Standard Grant

相似海外基金

Differentiating Cyclogenesis with and without Large Amplitude Mesoscale Gravity Waves: Implications for Rapidly Varying Heavy Precipitation and Gusty Winds
区分有和没有大振幅中尺度重力波的气旋发生:对快速变化的强降水和阵风的影响
  • 批准号:
    2334171
  • 财政年份:
    2024
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Continuing Grant
Patterning Mesoscale Chirality by Guided Crystal Twisting
通过引导晶体扭曲形成中尺度手性图案
  • 批准号:
    2325911
  • 财政年份:
    2024
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Standard Grant
The Biophysics of Mesoscale, Reversible, Biomolecular Assemblies
中尺度可逆生物分子组装的生物物理学
  • 批准号:
    EP/Y000501/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Fellowship
CAREER: Enabling High-throughput Creep Testing of Advanced Materials through in-situ Micromechanics and Mesoscale Modeling
职业:通过原位微观力学和介观建模实现先进材料的高通量蠕变测试
  • 批准号:
    2340174
  • 财政年份:
    2024
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Standard Grant
Thermospheric Circulation Using Mesoscale-Resolving Whole Atmosphere Model and Satellite Observations
使用中尺度解析整个大气模型和卫星观测的热层环流
  • 批准号:
    2409172
  • 财政年份:
    2024
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Standard Grant
Collaborative Research: Bridging the atomic scale and the mesoscale in the characterization of defect production and evolution in high entropy alloys
合作研究:在高熵合金缺陷产生和演化表征中连接原子尺度和介观尺度
  • 批准号:
    2425965
  • 财政年份:
    2024
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Standard Grant
Characterising and improving understanding of mesoscale convective systems over south-east Asia using machine learning
使用机器学习表征和提高对东南亚中尺度对流系统的理解
  • 批准号:
    2886050
  • 财政年份:
    2023
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Studentship
Collaborative Research: Mesoscale Predictability Across Climate Regimes
合作研究:跨气候机制的中尺度可预测性
  • 批准号:
    2312316
  • 财政年份:
    2023
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Standard Grant
Understanding the Role of Mesoscale Atmosphere-Ocean Interactions in Seasonal-to-Decadal Climate Prediction
了解中尺度大气-海洋相互作用在季节到十年气候预测中的作用
  • 批准号:
    2231237
  • 财政年份:
    2023
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Continuing Grant
CAREER: Simulating Mesoscale Quantum Dynamics and Non-linear Microscopy
职业:模拟中尺度量子动力学和非线性显微镜
  • 批准号:
    2341178
  • 财政年份:
    2023
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了