RAPID: Reconstruction of Hurricane Florence Flood Hydrographs (HF2Hs) for South Carolina's Critical Infrastructures Using Data Analytics Algorithms and In-situ Field Measurements

RAPID:使用数据分析算法和现场现场测量重建南卡罗来纳州关键基础设施的飓风弗洛伦斯洪水过程线 (HF2Hs)

基本信息

  • 批准号:
    1901646
  • 负责人:
  • 金额:
    $ 11.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-15 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

In the wake of Hurricane Florence in South Carolina, this research aims to collect high water marks (HWMs) data across flooded/damaged critical infrastructures, and perishable images and video footage from traffic cameras and social media outlets. The investigators will then reconstruct Hurricane Florence flood hydrographs (HF2Hs) using data analytics algorithms as well as HWMs data to estimate flood elevation and inundation extent over overtopped roads and bridges. Using the eastern portion of South Carolina (SC) as a case study, this RAPID project will address the following questions: Do reconstructed flood hydrographs over critical infrastructures provide valuable insight into flooding thresholds and frequencies? If so, how? To address these questions, the team consists of members with expertise in engineering hydrology and computer sciences and engineering who are positioned to deliver the needed collecting, examining, and archiving of perishable datasets. The methodology for collecting perishable data merges the broader objectives of enhancing perishable data collection through the use of traditional (tape measure, engineer's rule, etc.) and data analytics techniques, both of which depend on the timely collection of data. The reconstructed flood hydrographs for overtopped routes/roads and bridges will help understanding of how critical infrastructures respond to hurricane-induced flooding that presents persistent widespread challenges in many regions worldwide. The collected data will benefit the development of new numerical models for flood prediction that will deal with the unique needs and concepts of the U.S.'s southeast catchments (shallow aquifer parameterization). The data analytics algorithm is targeted be flexible and scalable to collect and analyze large sets of data which will be disseminated through open-source public repositories (e.g., GitHub). The collection and integration of data is targeted to facilitate communication/ collaboration between decision makers and technically-focused institutions. This project is intended to have an immediate impact on South Carolina, a state which is very vulnerable to repeated hurricane events and is under the threat of increasing floods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在南卡罗来纳州的佛罗伦萨飓风之后,该研究旨在收集洪水泛滥/受损的关键基础设施的高水位(HWMS)数据,以及来自交通摄像头和社交媒体渠道的易腐烂图像和录像。然后,研究人员将使用数据分析算法以及HWMS数据重建佛罗伦萨洪水水文图(HF2HS),以估计洪水高程和淹没范围,超过了超过的道路和桥梁。将南卡罗来纳州(SC)的东部作为案例研究,这个快速项目将解决以下问题:重建的关键基础设施上的洪水水文图是否为洪水阈值和频率提供了宝贵的见解?如果是这样,怎么样?为了解决这些问题,该团队由具有工程水文学和计算机科学和工程学专业知识的成员组成,他们可以提供所需的收集,检查和归档可腐烂数据集的成员。收集易腐烂数据的方法合并了通过使用传统(磁带测量,工程师的规则等)和数据分析技术来增强易腐烂数据收集的更广泛目标,这两者都取决于及时收集数据。重建的高层路线/道路和桥梁的洪水水文图将有助于理解关键基础设施如何应对飓风引起的洪水,这在全球许多地区都持续存在广泛的挑战。收集的数据将有利于洪水预测的新数值模型的开发,该模型将处理美国东南流域的独特需求和概念(浅水含水层参数化)。数据分析算法的目标是灵活且可扩展的,以收集和分析大量数据集,这些数据将通过开源公共存储库(例如GitHub)传播。数据的收集和集成旨在促进决策者和以技术为中心的机构之间的沟通/协作。该项目旨在对南卡罗来纳州有直接的影响,南卡罗来纳州非常容易受到反复飓风事件的影响,并且受到增加洪水的威胁。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来评估的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vidya Samadi其他文献

Challenges and opportunities when bringing machines onto the team: Human-AI teaming and flood evacuation decisions
将机器引入团队时的挑战和机遇:人机协作和洪水疏散决策
  • DOI:
    10.1016/j.envsoft.2024.105976
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vidya Samadi;Keri K. Stephens;A. Hughes;Pamela Murray
  • 通讯作者:
    Pamela Murray

Vidya Samadi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vidya Samadi', 18)}}的其他基金

Collaborative Research: CyberTraining: Implementation: Small: Inclusive Cyberinfrastructure and Machine Learning Training to Advance Water Science Research
合作研究:网络培训:实施:小型:包容性网络基础设施和机器学习培训,以推进水科学研究
  • 批准号:
    2320979
  • 财政年份:
    2024
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Standard Grant
SCC-PG : Human-AI Teaming for Flood Evacuation Decision Making
SCC-PG:人机协作进行洪水疏散决策
  • 批准号:
    2125283
  • 财政年份:
    2021
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Standard Grant
RAPID: Reconstruction of Hurricane Florence Flood Hydrographs (HF2Hs) for South Carolina's Critical Infrastructures Using Data Analytics Algorithms and In-situ Field Measurements
RAPID:使用数据分析算法和现场现场测量重建南卡罗来纳州关键基础设施的飓风弗洛伦斯洪水过程线 (HF2Hs)
  • 批准号:
    2035685
  • 财政年份:
    2020
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Standard Grant

相似国自然基金

跨物种解析脊髓损伤后CPG神经环路重建介导运动恢复的细胞与分子机制
  • 批准号:
    32320103004
  • 批准年份:
    2023
  • 资助金额:
    208 万元
  • 项目类别:
    国际(地区)合作与交流项目
Piezo1介导力学响应重塑骨髓巨噬细胞表型参与辐射后造血重建的机制研究
  • 批准号:
    82370114
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
阿尔泰山友谊峰南坡地区第四纪冰川演化序列与古气候重建
  • 批准号:
    42371011
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
全新世西太平洋暖池温跃层和新几内亚沿海潜流数十年至千年尺度的历史重建
  • 批准号:
    42376054
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
血管内皮源性Sema3G/Nrp2信号调控脑微血管重建改善脑缺血后功能恢复的机制研究
  • 批准号:
    82373855
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Puerto Rico Panel Study of Income Dynamics (PR-PSID)
波多黎各收入动态小组研究 (PR-PSID)
  • 批准号:
    10657678
  • 财政年份:
    2021
  • 资助金额:
    $ 11.5万
  • 项目类别:
Puerto Rico Panel Study of Income Dynamics (PR-PSID)
波多黎各收入动态小组研究 (PR-PSID)
  • 批准号:
    10284665
  • 财政年份:
    2021
  • 资助金额:
    $ 11.5万
  • 项目类别:
RAPID: Reconstruction of Hurricane Florence Flood Hydrographs (HF2Hs) for South Carolina's Critical Infrastructures Using Data Analytics Algorithms and In-situ Field Measurements
RAPID:使用数据分析算法和现场现场测量重建南卡罗来纳州关键基础设施的飓风弗洛伦斯洪水过程线 (HF2Hs)
  • 批准号:
    2035685
  • 财政年份:
    2020
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Standard Grant
Agile development of innovative, interactive hazard recognition and mitigationtools/learning e-platforms for workers involved in the rescue and recovery operations indiverse flooding environments
为参与不同洪水环境的救援和恢复行动的工作人员敏捷开发创新的交互式危险识别和缓解工具/学习电子平台
  • 批准号:
    9753678
  • 财政年份:
    2019
  • 资助金额:
    $ 11.5万
  • 项目类别:
Coordination of NGO and Government Roles in Housing Provision after Mega Disasters in Urban Areas: the Cases of Houston after Hurricane Harvey and Palu after the Sulawesi Earthquake and Tsunami
城市地区特大灾难后非政府组织和政府在住房供应方面的协调:飓风哈维后的休斯顿案例以及苏拉威西地震和海啸后的帕鲁案例
  • 批准号:
    19K04784
  • 财政年份:
    2019
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了