RAPID: Reconstruction of Hurricane Florence Flood Hydrographs (HF2Hs) for South Carolina's Critical Infrastructures Using Data Analytics Algorithms and In-situ Field Measurements

RAPID:使用数据分析算法和现场现场测量重建南卡罗来纳州关键基础设施的飓风弗洛伦斯洪水过程线 (HF2Hs)

基本信息

  • 批准号:
    1901646
  • 负责人:
  • 金额:
    $ 11.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-15 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

In the wake of Hurricane Florence in South Carolina, this research aims to collect high water marks (HWMs) data across flooded/damaged critical infrastructures, and perishable images and video footage from traffic cameras and social media outlets. The investigators will then reconstruct Hurricane Florence flood hydrographs (HF2Hs) using data analytics algorithms as well as HWMs data to estimate flood elevation and inundation extent over overtopped roads and bridges. Using the eastern portion of South Carolina (SC) as a case study, this RAPID project will address the following questions: Do reconstructed flood hydrographs over critical infrastructures provide valuable insight into flooding thresholds and frequencies? If so, how? To address these questions, the team consists of members with expertise in engineering hydrology and computer sciences and engineering who are positioned to deliver the needed collecting, examining, and archiving of perishable datasets. The methodology for collecting perishable data merges the broader objectives of enhancing perishable data collection through the use of traditional (tape measure, engineer's rule, etc.) and data analytics techniques, both of which depend on the timely collection of data. The reconstructed flood hydrographs for overtopped routes/roads and bridges will help understanding of how critical infrastructures respond to hurricane-induced flooding that presents persistent widespread challenges in many regions worldwide. The collected data will benefit the development of new numerical models for flood prediction that will deal with the unique needs and concepts of the U.S.'s southeast catchments (shallow aquifer parameterization). The data analytics algorithm is targeted be flexible and scalable to collect and analyze large sets of data which will be disseminated through open-source public repositories (e.g., GitHub). The collection and integration of data is targeted to facilitate communication/ collaboration between decision makers and technically-focused institutions. This project is intended to have an immediate impact on South Carolina, a state which is very vulnerable to repeated hurricane events and is under the threat of increasing floods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在南卡罗来纳州的飓风佛罗伦萨之后,这项研究旨在收集洪水/受损的关键基础设施的高水位线(HWM)数据,以及来自交通摄像头和社交媒体的易腐烂图像和视频片段。然后,调查人员将使用数据分析算法和HWM数据重建飓风佛罗伦萨洪水过程线(HF 2 H),以估计洪水高度和淹没过顶道路和桥梁的范围。以南卡罗来纳州(SC)东部地区为例,RAPID项目将解决以下问题:关键基础设施上重建的洪水过程线是否提供了对洪水阈值和频率的有价值的见解?如果是,如何做到?为了解决这些问题,该团队由具有工程水文学和计算机科学与工程专业知识的成员组成,他们能够提供所需的易腐数据集的收集,检查和存档。收集易腐数据的方法融合了通过使用传统的(卷尺,工程师的规则等)加强易腐数据收集的更广泛的目标。和数据分析技术,这两者都依赖于数据的及时收集。重建的被淹没的路线/道路和桥梁的洪水过程线将有助于了解关键基础设施如何应对飓风引发的洪水,这在世界许多地区构成了持续的广泛挑战。收集的数据将有利于开发新的洪水预测数值模型,以满足美国的独特需求和概念。的东南集水区(浅层含水层参数化)。数据分析算法的目标是灵活和可扩展的,以收集和分析将通过开源公共存储库(例如,GitHub)。收集和整合数据的目的是促进决策者和以技术为重点的机构之间的沟通/协作。该项目旨在对南卡罗来纳州产生直接影响,该州非常容易受到反复发生的飓风事件的影响,并受到日益严重的洪水的威胁。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vidya Samadi其他文献

Challenges and opportunities when bringing machines onto the team: Human-AI teaming and flood evacuation decisions
将机器引入团队时的挑战和机遇:人机协作和洪水疏散决策
  • DOI:
    10.1016/j.envsoft.2024.105976
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vidya Samadi;Keri K. Stephens;A. Hughes;Pamela Murray
  • 通讯作者:
    Pamela Murray
Decoding time: Unraveling the power of N-BEATS and N-HiTS vs. LSTM for accurate soil moisture prediction
解码时间:揭示N - BEATS和N - HiTS相较于LSTM在精准土壤湿度预测方面的能力
  • DOI:
    10.1016/j.compag.2025.110614
  • 发表时间:
    2025-10-01
  • 期刊:
  • 影响因子:
    8.900
  • 作者:
    Lisa Umutoni;Vidya Samadi;George Vellidis;Charles Privette III;Jose Payero;Bulent Koc
  • 通讯作者:
    Bulent Koc
Can large language models effectively reason about adverse weather conditions?
大型语言模型能否有效地对恶劣天气状况进行推理?
  • DOI:
    10.1016/j.envsoft.2025.106421
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    4.600
  • 作者:
    Nima Zafarmomen;Vidya Samadi
  • 通讯作者:
    Vidya Samadi

Vidya Samadi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vidya Samadi', 18)}}的其他基金

Collaborative Research: CyberTraining: Implementation: Small: Inclusive Cyberinfrastructure and Machine Learning Training to Advance Water Science Research
合作研究:网络培训:实施:小型:包容性网络基础设施和机器学习培训,以推进水科学研究
  • 批准号:
    2320979
  • 财政年份:
    2024
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Standard Grant
SCC-PG : Human-AI Teaming for Flood Evacuation Decision Making
SCC-PG:人机协作进行洪水疏散决策
  • 批准号:
    2125283
  • 财政年份:
    2021
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Standard Grant
RAPID: Reconstruction of Hurricane Florence Flood Hydrographs (HF2Hs) for South Carolina's Critical Infrastructures Using Data Analytics Algorithms and In-situ Field Measurements
RAPID:使用数据分析算法和现场现场测量重建南卡罗来纳州关键基础设施的飓风弗洛伦斯洪水过程线 (HF2Hs)
  • 批准号:
    2035685
  • 财政年份:
    2020
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目

相似海外基金

Atomistic reconstruction of large biomolecular systems from low-resolution cryo-electron microscopy data - RECKON
利用低分辨率冷冻电子显微镜数据原子重建大型生物分子系统 - RECKON
  • 批准号:
    EP/Y010221/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Fellowship
ZooCELL: Tracing the evolution of sensory cell types in animal diversity: multidisciplinary training in 3D cellular reconstruction, multimodal data ..
ZooCELL:追踪动物多样性中感觉细胞类型的进化:3D 细胞重建、多模态数据方面的多学科培训..
  • 批准号:
    EP/Y037049/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Research Grant
Tracing the evolution of sensory cell types in animal diversity: multidisciplinary training in 3D cellular reconstruction, multimodal data analysis
追踪动物多样性中感觉细胞类型的进化:3D 细胞重建、多模式数据分析的多学科培训
  • 批准号:
    EP/Y037081/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Research Grant
FaVoRe - Fast Volumetric Reconstruction
FaVoRe - 快速体积重建
  • 批准号:
    10083559
  • 财政年份:
    2024
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Collaborative R&D
TrustMRI: Trustworthy and Robust Magnetic Resonance Image Reconstruction with Uncertainty Modelling and Deep Learning
TrustMRI:利用不确定性建模和深度学习进行可靠且鲁棒的磁共振图像重建
  • 批准号:
    EP/X039277/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Research Grant
A self-driven intramedullary nail for the reconstruction of large bone defects
用于重建大骨缺损的自驱动髓内钉
  • 批准号:
    MR/Z503836/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Research Grant
One-step reconstruction of plastic waste back to its constituent monomers (ONESTEP)
将塑料废物一步重建回其组成单体(ONESTEP)
  • 批准号:
    EP/Y003934/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Research Grant
Deep Learning for 3-D reconstruction of heterogeneous molecular structures from Cryo-EM data
利用冷冻电镜数据进行异质分子结构 3D 重建的深度学习
  • 批准号:
    BB/Y513878/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Research Grant
3DFace@Home: A pilot study for robust and highly accurate facial 3D reconstruction from mobile devices for facial growth monitoring at home
3DFace@Home:一项通过移动设备进行稳健且高精度面部 3D 重建的试点研究,用于家庭面部生长监测
  • 批准号:
    EP/X036642/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Research Grant
Ethnography of Archaeology and Architectural Reconstruction
考古民族志与建筑重建
  • 批准号:
    23K25438
  • 财政年份:
    2024
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了