Free Resolutions, K-Theory and dg-Categories

自由分辨率、K 理论和 dg 类别

基本信息

  • 批准号:
    1901848
  • 负责人:
  • 金额:
    $ 25.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

This research project concerns topics related to commutative and homological algebra and looks at formal systems of equations. While the rules for manipulating such equations are the same as the ones learned in high-school algebra, the general setting in which they are studied yields powerful tools that put commutative algebra at the heart of much of pure mathematics with applications to many other areas of study, such as number theory (the study of properties of the integers) and algebraic geometry (the study of geometric properties of solutions to systems of polynomial equations). Homological algebra is the branch of algebra related to the field of algebraic topology (the study of topological spaces, i.e."shapes"). A central object of study in homological algebra is that of a complex of modules, which can be thought of an abstraction of the notion of a topological space ("shape"). One specific goal of this project is to settle some long-standing conjectures concerning such complexes and the analogous topological spaces. The award will also support graduate students working on affiliated topics. In more detail, this research project aims to settle various conjectures concerning bounded complexes of finite rank free modules over commutative rings, in particular concerning the possible ranks of the modules appearing in such complexes that have finite length homology. These topics relate to conjectures of Halperin and Carlsson concerning free actions of tori and elementary abelian p-groups on topological spaces. The success of the proposed research on these topics will thus advance our understanding of homological algebra over commutative rings, of algebraic topology, and of the interaction of the two. This research also will pursue several conjectures about smooth and proper dg-categories, focusing on the example of the dg-category of matrix factorizations associated to a hyper-surface with an isolated singularity. Smooth and property dg-categories can be thought of as non-commutative analogues of smooth and proper algebraic varieties. The success of the goals in this area will advance our understanding of the non-commutative analogues of well-known conjectures in classical algebraic geometry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究项目涉及与交换和同调代数相关的主题,并着眼于形式方程系统。虽然处理这类方程的规则与高中代数中所学的规则相同,但学习这些方程的一般设置产生了强大的工具,将交换代数置于许多纯数学的核心,并应用于许多其他研究领域,如数论(研究整数的性质)和代数几何(研究多项式方程组的解的几何性质)。同调代数是与代数拓扑学(研究拓扑空间,即“形”)有关的代数的一个分支。同调代数的一个中心研究对象是模复,它可以被认为是拓扑空间(“形”)概念的抽象。这个项目的一个具体目标是解决关于这种复形和类似拓扑空间的一些长期存在的猜想。该奖项还将支持研究生从事相关主题的工作。更具体地说,这个研究项目旨在解决关于交换环上有限秩自由模的有界复形的各种猜想,特别是关于具有有限长度同调的这种复形中出现的模的可能的秩.这些主题涉及Halperin和Carlsson关于环面和初等交换p-群在拓扑空间上的自由作用的猜想。这些课题研究的成功将促进我们对交换环上的同调代数、代数拓扑学以及两者之间相互作用的理解。这项研究还将继续几个关于光滑和真dg-范畴的猜想,重点是与具有孤立奇点的超曲面相关的矩阵分解的dg-范畴的例子。光滑和性质dg-范畴可以看作是光滑和真代数簇的非交换类比。这一领域目标的成功将促进我们对经典代数几何中著名猜想的非对易类似的理解。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A proof of a conjecture of Shklyarov
Shklyarov猜想的证明
  • DOI:
    10.4171/jncg/501
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Brown, Michael K.;Walker, Mark E.
  • 通讯作者:
    Walker, Mark E.
Multiplicities and Betti numbers in local algebra via lim Ulrich points
  • DOI:
    10.2140/ant.2022.16.1213
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Iyengar;Linquan Ma;M. Walker
  • 通讯作者:
    S. Iyengar;Linquan Ma;M. Walker
Adams operations in commutative algebra
交换代数中的 Adams 运算
  • DOI:
    10.1007/978-3-030-65064-3_4
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mark E. Walker
  • 通讯作者:
    Mark E. Walker
Maximal Cohen-Macaulay complexes and their uses: A partial survey
最大科恩-麦考利复合体及其用途:部分调查
Standard conjecture D for matrix factorizations
矩阵分解的标准猜想 D
  • DOI:
    10.1016/j.aim.2020.107092
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Brown, Michael K.;Walker, Mark E.
  • 通讯作者:
    Walker, Mark E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Walker其他文献

The effectiveness of implementing a reminder system into routine clinical practice: does it increase postpartum screening in women with gestational diabetes?
在常规临床实践中实施提醒系统的有效性:它是否会增加妊娠期糖尿病女性的产后筛查?
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alison K. Shea;Baiju R. Shah;Baiju R. Shah;Heather D. Clark;Heather D. Clark;Janine Malcolm;Mark Walker;Mark Walker;A. Karovitch;Erin Keely
  • 通讯作者:
    Erin Keely
Single Dose of Antenatal Corticosteroids (SNACS) Non-Inferiority Randomized Controlled Trial for Pregnancies at Risk of Preterm Delivery
  • DOI:
    10.1016/j.jogc.2022.02.071
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sarah McDonald;George Tomlinson;Jodie Dodd;Elizabeth Asztalos;Thierry Lacaze-Masmonteil;Prakesh Shah;Fabiana Bacchini;Isabelle Boucoiran;Barbra de Vrijer;Victoria Allen;Amit Mukerji;Mark Walker;Graeme Smith;Nir Melamed;Salim Yusuf;Louis Schmidt;Stephen Matthews;K.S. Joseph;Petros Pechlivanoglou;Kellie Murphy
  • 通讯作者:
    Kellie Murphy
Class confrontations in archaeology
  • DOI:
    10.1007/bf03374285
  • 发表时间:
    2016-09-23
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Randall H. McGuire;Mark Walker
  • 通讯作者:
    Mark Walker
Medical Education in the New Millennium. Medical Informatics, Evidence-based Medicine, Self-directed Learning and the K.O.A.L.A.© Programme
  • DOI:
    10.1016/s0849-5831(98)80061-x
  • 发表时间:
    1998-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Michael Fung Kee Fung;Lora Temple;Mark Walker;Karen Fung Kee Fung
  • 通讯作者:
    Karen Fung Kee Fung
Advances in Resident Education: The Introduction of a Computerized Learning Portfolio—Koala
  • DOI:
    10.1016/s0849-5831(16)30933-8
  • 发表时间:
    1997-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mark Walker;Michael Fung Kee Fung;Karen Ash
  • 通讯作者:
    Karen Ash

Mark Walker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Walker', 18)}}的其他基金

Conference: URiCA 2024 and 2025
会议:URiCA 2024 和 2025
  • 批准号:
    2409946
  • 财政年份:
    2024
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Standard Grant
The Non-Commutative Hodge Conjecture and Multiplicities of Modules and Complexes
非交换霍奇猜想以及模和复形的重数
  • 批准号:
    2200732
  • 财政年份:
    2022
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Standard Grant
PREC Track 1: Expanding the Chemical Space of Ribosomally Synthesized and Post-Translationally Modified peptides
PREC 轨道 1:扩展核糖体合成和翻译后修饰肽的化学空间
  • 批准号:
    2216836
  • 财政年份:
    2022
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Continuing Grant
Commutative Algebra Conference for Young Researchers
青年研究人员交换代数会议
  • 批准号:
    2001591
  • 财政年份:
    2019
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Standard Grant
Conferences on Commutative Algebra for Early Career Researchers (KUMUNUJr 2018-2019)
早期职业研究人员交换代数会议 (KUMUNUJr 2018-2019)
  • 批准号:
    1802088
  • 财政年份:
    2018
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Standard Grant
Stable Cohomology: Foundations and Applications
稳定上同调:基础和应用
  • 批准号:
    1804126
  • 财政年份:
    2018
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Standard Grant
Midwestern Young Researchers Conference on Commutative Algebra and Related Disciplines: KUMUNU Jr 2017
中西部青年研究人员交换代数及相关学科会议:KUMUNU Jr 2017
  • 批准号:
    1708544
  • 财政年份:
    2017
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Standard Grant
Midwestern Young Researchers Conference on Commutative Algebra and Related Disciplines: KUMUNU Jr 2016
中西部青年研究人员交换代数及相关学科会议:KUMUNU Jr 2016
  • 批准号:
    1601292
  • 财政年份:
    2016
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Standard Grant
Midwestern Young Researchers Conference on Commutative Algebra and Related Disciplines: KUMUNU Jr 2015
中西部青年研究人员交换代数及相关学科会议:KUMUNU Jr 2015
  • 批准号:
    1501798
  • 财政年份:
    2015
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Standard Grant
KUMUNUJr 2014
库穆努Jr 2014
  • 批准号:
    1401145
  • 财政年份:
    2014
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Standard Grant

相似海外基金

Free Resolutions
免费决议
  • 批准号:
    2401238
  • 财政年份:
    2024
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Continuing Grant
Exploring Frontiers on applying CubeSat images with very high spatial and temporal resolutions to remotely estimate species-level tree phenology
探索应用具有极高空间和时间分辨率的 CubeSat 图像远程估计物种级树木物候的前沿
  • 批准号:
    23K18517
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Phenomenological inspection of string landscape based on resolutions of singularities
基于奇点解析的弦景观现象学检验
  • 批准号:
    22KJ1426
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Resolutions of positivity in Hopf algebras
Hopf 代数中正性的解析
  • 批准号:
    RGPIN-2020-04230
  • 财政年份:
    2022
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Discovery Grants Program - Individual
A graph framework for modelling, analysing, and visualising big geospatial networks at varying spatial resolutions
用于以不同空间分辨率对大型地理空间网络进行建模、分析和可视化的图形框架
  • 批准号:
    547701-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Finite Group Actions on Free Resolutions
自由解的有限群动​​作
  • 批准号:
    2200844
  • 财政年份:
    2022
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Standard Grant
Diagnostics development of ionization states in intense-laser irradiated matter with high spatio-temporal resolutions
高时空分辨率强激光照射物质电离态的诊断进展
  • 批准号:
    22K03571
  • 财政年份:
    2022
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Balance of Power: Analysis of Interstate Wars and Peaceful Resolutions of Conflict, 1000-2000 AD
权力平衡:对公元 1000-2000 年国家间战争与和平解决冲突的分析
  • 批准号:
    22K01533
  • 财政年份:
    2022
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A graph framework for modelling, analysing, and visualising big geospatial networks at varying spatial resolutions
用于以不同空间分辨率对大型地理空间网络进行建模、分析和可视化的图形框架
  • 批准号:
    547701-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Investigations in Combinatorial and Topological Resolutions
组合和拓扑解析的研究
  • 批准号:
    564650-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 25.76万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了