Cohomology and Support Varieties
上同调和支持簇
基本信息
- 批准号:1901854
- 负责人:
- 金额:$ 23.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Representation theory studies symmetries of linear spaces. For such tractable example as a two-dimensional plane one can study symmetries via periodic tessellations they generate. Beautiful examples and even complete lists of such tessellations are frequently implemented via artistic means, as illustrated in Escher's famous symmetry drawings or wallpaper patterns in the Alhambra in Spain. In fact, it is known that there are exactly seventeen essentially different tessellations of the plane. Enumerating symmetries of more complicated and higher dimensional objects is often a daunting if not outright impossible task. Yet, having a grasp on such complicated symmetries proves to be important not only in representation theory but in many other areas, both pure and applied, including geometry, topology, algebra, as well as physics and chemistry. In this project, the PI will investigate certain invariants of symmetries that come in the form of interesting geometric shapes. Her goal is to investigate how much data about the original symmetries these geometric objects contain, shaping them to be a useful tool in the study of symmetries themselves. Founded more than a hundred years ago, representation theory is now a thriving field that exhibits many deep connections with other areas of mathematics. Modular representation theory draws methods and motivation from a host of other areas, including algebraic geometry and topology. In 1971, Quillen laid the foundations for algebraic geometry applications to group cohomology, opening a new chapter in the study of modular representation theory that is being actively explored to this day. This research project has its roots in Quillen's work, seeking to develop the theory of support varieties in several different, but interrelated contexts. This involves solving several fundamental problems concerning the structure of representations and the cohomology of finite dimensional algebras. The applications will provide new information on the global structure of various triangulated categories associated to representations of finite supergroup schemes, Schur algebras, Nichols algebras, Frobenius kernels of reductive groups, and Lie superalgebras.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
表示论研究线性空间的对称性。对于像二维平面这样容易处理的例子,人们可以通过它们产生的周期性镶嵌来研究对称性。美丽的例子甚至此类镶嵌的完整列表经常通过艺术手段实现,正如埃舍尔著名的对称绘画或西班牙阿尔汉布拉的壁纸图案所示。事实上,已知平面上正好有十七种本质上不同的镶嵌。枚举更复杂和更高维的物体的对称性通常是一项令人生畏的任务,如果不是完全不可能的话。然而,掌握如此复杂的对称性被证明不仅在表示论中而且在许多其他领域都很重要,无论是纯粹的还是应用的,包括几何,拓扑,代数,以及物理和化学。在这个项目中,PI将研究以有趣的几何形状形式出现的对称性的某些不变量。她的目标是研究这些几何对象包含多少关于原始对称性的数据,使它们成为研究对称性本身的有用工具。 成立于一百多年前,表示论现在是一个蓬勃发展的领域,与其他数学领域有着许多深刻的联系。模表示理论从许多其他领域,包括代数几何和拓扑学中汲取了方法和动机。在1971年,奎伦奠定了基础,代数几何应用群上同调,开辟了新的篇章,研究模块化表示理论,正在积极探索这一天。这个研究项目有其根源在奎伦的工作,寻求发展理论的支持品种在几个不同的,但相互关联的情况下。这涉及到解决几个基本问题的结构表示和上同调的有限维代数。这些应用将提供与有限超群方案、Schur代数、Nichols代数、还原群的Frobenius核和李超代数的表示相关的各种三角分类的全球结构的新信息。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rank varieties and ?-points for elementary supergroup schemes
基本超群方案的排序变体和 ? 点
- DOI:10.1090/btran/74
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Benson, Dave;Iyengar, Srikanth;Krause, Henning;Pevtsova, Julia
- 通讯作者:Pevtsova, Julia
Cohomology rings of finite-dimensional pointed Hopf algebras over abelian groups
阿贝尔群上有限维尖Hopf代数的上同调环
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:1.2
- 作者:Andruskiewitsch, Nicolas;Angiono, Ivan;Pevtsova, Julia;and Witherspoon, Sarah
- 通讯作者:and Witherspoon, Sarah
LOCAL DUALITY FOR THE SINGULARITY CATEGORY OF A FINITE DIMENSIONAL GORENSTEIN ALGEBRA
- DOI:10.1017/nmj.2020.2
- 发表时间:2019-05
- 期刊:
- 影响因子:0.8
- 作者:D. Benson;S. Iyengar;H. Krause;J. Pevtsova
- 通讯作者:D. Benson;S. Iyengar;H. Krause;J. Pevtsova
Support for Integrable Hopf Algebras via Noncommutative Hypersurfaces
通过非交换超曲面支持可积 Hopf 代数
- DOI:10.1093/imrn/rnab264
- 发表时间:2021
- 期刊:
- 影响因子:1
- 作者:Negron, Cris;Pevtsova, Julia
- 通讯作者:Pevtsova, Julia
Stratification and duality for unipotent finite supergroup schemes.
单能有限超群方案的分层和对偶性。
- DOI:10.1017/9781108942874.008
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Benson, D.
- 通讯作者:Benson, D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julia Pevtsova其他文献
Stratification and $$\pi $$ -cosupport: finite groups
- DOI:
10.1007/s00209-017-1853-8 - 发表时间:
2017-02-23 - 期刊:
- 影响因子:1.000
- 作者:
Dave Benson;Srikanth B. Iyengar;Henning Krause;Julia Pevtsova - 通讯作者:
Julia Pevtsova
The Half-quantum Flag Variety and Representations for Small Quantum Groups
- DOI:
10.1007/s00031-025-09909-z - 发表时间:
2025-06-04 - 期刊:
- 影响因子:0.400
- 作者:
Cris Negron;Julia Pevtsova - 通讯作者:
Julia Pevtsova
Julia Pevtsova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julia Pevtsova', 18)}}的其他基金
Support theories: axiomatics, realizations and calculations
支持理论:公理、实现和计算
- 批准号:
2200832 - 财政年份:2022
- 资助金额:
$ 23.6万 - 项目类别:
Continuing Grant
Geometric and Cohomological Invariants in Modular Representation Theory
模表示理论中的几何和上同调不变量
- 批准号:
1501146 - 财政年份:2015
- 资助金额:
$ 23.6万 - 项目类别:
Standard Grant
Conference: Cohomology and Support in Representation Theory and Related Topics
会议:表示论及相关主题中的上同调和支持
- 批准号:
1201345 - 财政年份:2012
- 资助金额:
$ 23.6万 - 项目类别:
Standard Grant
CAREER: From Modular Representation Theory to Geometry: connections and interactions
职业:从模块化表示理论到几何:连接和相互作用
- 批准号:
0953011 - 财政年份:2010
- 资助金额:
$ 23.6万 - 项目类别:
Continuing Grant
Modular representation theory, triangulated categories and cohomology
模表示论、三角范畴和上同调
- 批准号:
0800940 - 财政年份:2008
- 资助金额:
$ 23.6万 - 项目类别:
Standard Grant
Geometric aspects of representations and cohomology of finite dimensional algebras
有限维代数表示和上同调的几何方面
- 批准号:
0629156 - 财政年份:2005
- 资助金额:
$ 23.6万 - 项目类别:
Standard Grant
Geometric aspects of representations and cohomology of finite dimensional algebras
有限维代数表示和上同调的几何方面
- 批准号:
0500946 - 财政年份:2005
- 资助金额:
$ 23.6万 - 项目类别:
Standard Grant
相似国自然基金
两性离子载体(zwitterionic support)作为可溶性支载体在液相有机合成中的应用
- 批准号:21002080
- 批准年份:2010
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于Support Vector Machines(SVMs)算法的智能型期权定价模型的研究
- 批准号:70501008
- 批准年份:2005
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
An innovative international payment collection platform using fintech and FPS technology to support SMBs with international transactions that could cut fees by 83%
An%20innovative%20international%20 payment%20collection%20platform%20using%20fintech%20and%20FPS%20technology%20to%20support%20SMBs%20with%20international%20transactions%20that%20could%20cut%20fees%20by%2083%
- 批准号:
10098770 - 财政年份:2024
- 资助金额:
$ 23.6万 - 项目类别:
Collaborative R&D
Exploring the Impact of Clinical Diagnosis on Health and Education Outcomes for Children Receiving Special Educational Needs support for Autism
探索临床诊断对接受自闭症特殊教育需求支持的儿童的健康和教育结果的影响
- 批准号:
ES/Z502431/1 - 财政年份:2024
- 资助金额:
$ 23.6万 - 项目类别:
Fellowship
The effectiveness of public support for high-potential businesses
对高潜力企业的公共支持的有效性
- 批准号:
ES/Z50256X/1 - 财政年份:2024
- 资助金额:
$ 23.6万 - 项目类别:
Research Grant
C-NEWTRAL: smart CompreheNsive training to mainstrEam neW approaches for climaTe-neutRal cities through citizen engAgement and decision-making support
C-NEWTRAL:智能综合培训,通过公民参与和决策支持将气候中和城市的新方法纳入主流
- 批准号:
EP/Y032640/1 - 财政年份:2024
- 资助金额:
$ 23.6万 - 项目类别:
Research Grant
ICF: Use of Unmanned Aerial vehicles (Medical Drones) to Support Differentiated Service Delivery Models for Elimination of HIV in Uganda
ICF:使用无人机(医疗无人机)支持乌干达消除艾滋病毒的差异化服务提供模式
- 批准号:
MR/Y019717/1 - 财政年份:2024
- 资助金额:
$ 23.6万 - 项目类别:
Research Grant
Stuck in the mud: addressing the fine sediment conundrum with multiscale and interdisciplinary approaches to support global freshwater biodiversity
陷入困境:采用多尺度和跨学科方法解决细小沉积物难题,支持全球淡水生物多样性
- 批准号:
MR/Y020200/1 - 财政年份:2024
- 资助金额:
$ 23.6万 - 项目类别:
Fellowship
Providing Aid to Support STEM Success for Talented, Low-Income Students
为有才华的低收入学生提供 STEM 成功支持
- 批准号:
2321667 - 财政年份:2024
- 资助金额:
$ 23.6万 - 项目类别:
Continuing Grant
Partial Support of the Condensed Matter and Materials Research Committee
凝聚态与材料研究委员会的部分支持
- 批准号:
2337353 - 财政年份:2024
- 资助金额:
$ 23.6万 - 项目类别:
Standard Grant
Support for Institutes and Research Groups on Qualitative and Multi-Method Research: 2024-2026
对定性和多方法研究机构和研究小组的支持:2024-2026
- 批准号:
2343087 - 财政年份:2024
- 资助金额:
$ 23.6万 - 项目类别:
Standard Grant
AUC-GRANTED: Advancing Transformation of the Research Enterprise through Shared Resource Support Model for Collective Impact and Synergistic Effect.
AUC 授予:通过共享资源支持模型实现集体影响和协同效应,推进研究企业转型。
- 批准号:
2341110 - 财政年份:2024
- 资助金额:
$ 23.6万 - 项目类别:
Cooperative Agreement














{{item.name}}会员




