CAREER: From Modular Representation Theory to Geometry: connections and interactions

职业:从模块化表示理论到几何:连接和相互作用

基本信息

  • 批准号:
    0953011
  • 负责人:
  • 金额:
    $ 41.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

Pevtsova intends to develop a theory that relates representations of finite group schemes to vector bundles on projective varieties, thereby establishing a novel connection between representation theory and algebraic geometry. The proposed research takes its roots in previous work of the PI and collaborators in representations and cohomology of finite dimensional algebras. The unique perspective of the proposed development has a potential for significant applications in both algebraic geometry and representation theory, ranging from construction of new examples of vector bundles to classification results. Other specific areas of the proposed research include computations of important examples of support varieties, constructions of new invariants for small quantum groups, and advances to the theory of modules of constant Jordan type. In addition, Pevtsova proposes to make contributions to the ``triangular geometry", a new geometric theory that encodes the structure of triangulated categories. Bringing the projects on finite group schemes and triangular geometry to a meeting point, Pevtsova is seeking to compare derived categories associated to different algebraic objects via their geometry.Representation theory studies actions of groups and other algebraic structures on vector spaces. It takes its origins in the study of symmetries and has emerged as a subject on its own about hundred years ago in the work of Frobenius and Schur. In its current stage of development, representation theory has been discovered to be intimately intertwined with numerous brunches of mathematics, such as geometry, topology and combinatorics, as well as physics. Pevtsova is particularly interested in connections with geometry. She has always been fascinated by the beautiful interplay between algebra and geometry that transcends many areas of mathematical research. In her CAREER project, she seeks to develop a new algebra-geometric connection, building a bridge between algebraic descriptions of representations which can be presented in terms of matrices and certain geometric invariants which can be thought of as spaces. In that endeavor she hopes to develop techniques that will hold a potential to shed light on some longstanding problems in both representation theory and geometry. The PI also has an extensive educational program. She intends to supervise both undergraduate and graduate research and to develop a course on problem solving in connection with the training of the Putnam team at the University of Washington. Building on her existing outreach experience the PI intends to create a network of ``Math challenge" afterschool programs for gifted elementary and middle school students in Seattle Public schools. She also proposes to organize a summer school for young researchers in Representation Theory and related areas in the Summer of 2012. By creating these opportunities for talented K-12 students, undergraduates and graduate students, Pevtsova intends to attract more qualified candidates to careers in Mathematical Sciences.
Pevtsova打算发展一种理论,将有限群方案的表示与投射簇上的向量丛联系起来,从而在表示论和代数几何之间建立一种新的联系。拟议的研究需要在PI和合作者在有限维代数的表示和上同调以前的工作的根源。所提出的发展的独特视角具有潜在的显着的应用在代数几何和表示理论,从建设新的例子向量束的分类结果。 其他具体领域的拟议研究包括计算的重要例子的支持品种,建设新的不变量的小量子群,并取得进展的理论模块的恒定约旦型。 此外,Pevtsova提出对“三角几何”做出贡献,这是一种新的几何理论,编码三角范畴的结构。 Pevtsova将有限群方案和三角几何的项目带到了一个交汇点,他试图通过几何比较与不同代数对象相关的派生类别。表示论研究向量空间上的群和其他代数结构的作用。它起源于对称性的研究,并在大约一百年前的弗罗贝纽斯和舒尔的著作中作为一个独立的主题出现。在其目前的发展阶段,表征理论已被发现与数学的许多分支密切相关,如几何学,拓扑学和组合学,以及物理学。Pevtsova特别感兴趣的是与几何的连接。她一直着迷于代数和几何之间的美丽的相互作用,超越了数学研究的许多领域。在她的职业生涯项目,她寻求开发一种新的代数几何连接,建立一个桥梁之间的代数描述的表示,可以提出的矩阵和某些几何不变量,可以被认为是空间。 在这一奋进中,她希望开发出的技术,将有可能阐明一些长期存在的问题,在这两个表示理论和几何。 PI也有一个广泛的教育计划。她打算指导本科生和研究生的研究,并为华盛顿大学的普特南小组的培训开设一门解决问题的课程。在她现有的推广经验的基础上,PI打算为西雅图公立学校的天才小学生和中学生创建一个"数学挑战”课后项目网络。她还建议在2012年夏季为表征理论和相关领域的年轻研究人员组织一个暑期学校。通过为有才华的K-12学生,本科生和研究生创造这些机会,Pevtsova打算吸引更多合格的候选人在数学科学的职业生涯。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Julia Pevtsova其他文献

Stratification and $$\pi $$ -cosupport: finite groups
  • DOI:
    10.1007/s00209-017-1853-8
  • 发表时间:
    2017-02-23
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Dave Benson;Srikanth B. Iyengar;Henning Krause;Julia Pevtsova
  • 通讯作者:
    Julia Pevtsova
The Half-quantum Flag Variety and Representations for Small Quantum Groups
  • DOI:
    10.1007/s00031-025-09909-z
  • 发表时间:
    2025-06-04
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    Cris Negron;Julia Pevtsova
  • 通讯作者:
    Julia Pevtsova

Julia Pevtsova的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Julia Pevtsova', 18)}}的其他基金

Support theories: axiomatics, realizations and calculations
支持理论:公理、实现和计算
  • 批准号:
    2200832
  • 财政年份:
    2022
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Continuing Grant
Cohomology and Support Varieties
上同调和支持簇
  • 批准号:
    1901854
  • 财政年份:
    2019
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Standard Grant
Geometric and Cohomological Invariants in Modular Representation Theory
模表示理论中的几何和上同调不变量
  • 批准号:
    1501146
  • 财政年份:
    2015
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Standard Grant
Conference: Cohomology and Support in Representation Theory and Related Topics
会议:表示论及相关主题中的上同调和支持
  • 批准号:
    1201345
  • 财政年份:
    2012
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Standard Grant
Modular representation theory, triangulated categories and cohomology
模表示论、三角范畴和上同调
  • 批准号:
    0800940
  • 财政年份:
    2008
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Standard Grant
Geometric aspects of representations and cohomology of finite dimensional algebras
有限维代数表示和上同调的几何方面
  • 批准号:
    0629156
  • 财政年份:
    2005
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Standard Grant
Geometric aspects of representations and cohomology of finite dimensional algebras
有限维代数表示和上同调的几何方面
  • 批准号:
    0500946
  • 财政年份:
    2005
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Modular积图和最大团的草图形状匹配技术研究
  • 批准号:
    61305091
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

An application of mock modular forms to representation theory
模拟模块化形式在表示论中的应用
  • 批准号:
    23K19018
  • 财政年份:
    2023
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Modular representation theory, Hilbert modular forms and the geometric Breuil-Mézard conjecture.
模表示理论、希尔伯特模形式和几何布勒伊-梅扎德猜想。
  • 批准号:
    EP/W001683/1
  • 财政年份:
    2022
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Fellowship
Sheaf-Theoretic Methods in Modular Representation Theory
模表示理论中的层理论方法
  • 批准号:
    2202012
  • 财政年份:
    2022
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Standard Grant
A representation of the Teichmuller modular group as a group of rational transfomations and its applications to dynamical systems and Kleinian groups
Teichmuller 模群作为一组有理变换的表示及其在动力系统和 Kleinian 群中的应用
  • 批准号:
    21K03271
  • 财政年份:
    2021
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Modular Representation Theory and Categorification with Applications
模块化表示理论及其分类及其应用
  • 批准号:
    2101791
  • 财政年份:
    2021
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Standard Grant
Modular Lie algebras and representation theory
模李代数和表示论
  • 批准号:
    2281585
  • 财政年份:
    2019
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Studentship
The modular representation theory of combinatorics structures and its applications
组合结构的模表示理论及其应用
  • 批准号:
    18K03245
  • 财政年份:
    2018
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representation theory of modular Lie algebras and superalgebras
模李代数和超代数的表示论
  • 批准号:
    EP/R018952/1
  • 财政年份:
    2018
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Research Grant
Geometric Methods in Modular Representation Theory
模表示论中的几何方法
  • 批准号:
    1802241
  • 财政年份:
    2018
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Continuing Grant
New dualities in modular representation theory
模表示理论中的新对偶性
  • 批准号:
    DP180102563
  • 财政年份:
    2018
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了