Support theories: axiomatics, realizations and calculations
支持理论:公理、实现和计算
基本信息
- 批准号:2200832
- 负责人:
- 金额:$ 23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Representation theory is a study of symmetries of linear spaces. Going back to its founders, Frobenius, Schur, Burnside, and Brauer, who first developed the subject over a century ago, the standard approach is to decompose a linear space with its symmetry into a sum of "simple ones," and then classify the simple ones into coherent and (relatively) comprehensible lists and families. The "Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups" is a classical and fundamental example of this strategy in action. In this project, the PI turns to the study of symmetries which do not subject themselves to such nice decompositions as in the classical case, which live in the world of "wild" representation theories. Such theories are ubiquitous in mathematics. They arise in algebra, topology, math physics, combinatorics, and, of course, representation theory itself. The PI will employ the new and rapidly developing subject of tensor triangular geometry, which combines topological, homological, and categorical techniques, to induce some structure in this wild representation territory, thus advancing our general understanding of this complicated world of symmetries. This project will provide research and training opportnities for undergraduate and graduate students.In more detail, this projects will advance knowledge in several new directions within the realm of tensor triangular geometry. It builds on PI's expertise in support theories in modular settings and branches out to different areas where the representation theories to be studied differ from the setting of finite groups in one or more significant aspects. The most interesting is when the theory is monoidal but not symmetric, such as for small quantum groups and their Borel subalgebras. Besides quantum groups, the PI will study and develop further the tensor triangular picture for complex Lie superalgebras, Nichols algebras of diagonal type, Schur algebras, Frobenius kernels, and finite supergroup schemes. The PI will also study local properties of some representation categories associated to Gorenstein algebras and the cohomology of finite dimensional Hopf and Nichols algebras.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
表示论是一门研究线性空间对称性的学科。追溯到它的创始人Frobenius、Schur、Burnside和Brauer,他们在一个多世纪前首次提出了这一主题,标准方法是将具有对称性的线性空间分解成几个“简单的”,然后将简单的分解成连贯的和(相对)可理解的列表和族。《有限群图集:单群的极大子群和普通特征标》就是这一策略在实践中的一个经典和基本的例子。在这个项目中,PI转向对对称性的研究,这些对称性不会像经典情况下那样受到很好的分解,因为经典情况下生活在“狂野的”表示理论的世界中。这样的理论在数学中无处不在。它们产生于代数、拓扑学、数学物理、组合学,当然还有表示论本身。PI将使用迅速发展的张量三角几何这一新的学科,它结合了拓扑学、同调和分类技术,在这个狂野的表示领域中归纳出一些结构,从而促进我们对这个复杂的对称世界的总体理解。这个项目将为本科生和研究生提供研究和培训机会。更详细地说,这个项目将在张量三角几何领域内的几个新方向上推进知识。它以PI在模集的支持理论方面的专业知识为基础,并扩展到不同的领域,在这些领域中,要研究的表示理论在一个或多个重要方面不同于有限群的设置。最有趣的是当理论是么一但不对称的时候,例如对于小量子群和它们的Borel子代数。除了量子群,PI还将进一步研究和发展复李超代数、对角型Nichols代数、Schur代数、Frobenius核和有限超群方案的张量三角图。PI还将研究与Gorenstein代数相关的一些表示范畴的局部性质以及有限维Hopf和Nichols代数的上同调。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hypersurface support and prime ideal spectra for stable categories
- DOI:10.2140/akt.2023.8.25
- 发表时间:2021-01
- 期刊:
- 影响因子:0.6
- 作者:C. Negron;J. Pevtsova
- 通讯作者:C. Negron;J. Pevtsova
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julia Pevtsova其他文献
Stratification and $$\pi $$ -cosupport: finite groups
- DOI:
10.1007/s00209-017-1853-8 - 发表时间:
2017-02-23 - 期刊:
- 影响因子:1.000
- 作者:
Dave Benson;Srikanth B. Iyengar;Henning Krause;Julia Pevtsova - 通讯作者:
Julia Pevtsova
The Half-quantum Flag Variety and Representations for Small Quantum Groups
- DOI:
10.1007/s00031-025-09909-z - 发表时间:
2025-06-04 - 期刊:
- 影响因子:0.400
- 作者:
Cris Negron;Julia Pevtsova - 通讯作者:
Julia Pevtsova
Julia Pevtsova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julia Pevtsova', 18)}}的其他基金
Geometric and Cohomological Invariants in Modular Representation Theory
模表示理论中的几何和上同调不变量
- 批准号:
1501146 - 财政年份:2015
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Conference: Cohomology and Support in Representation Theory and Related Topics
会议:表示论及相关主题中的上同调和支持
- 批准号:
1201345 - 财政年份:2012
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
CAREER: From Modular Representation Theory to Geometry: connections and interactions
职业:从模块化表示理论到几何:连接和相互作用
- 批准号:
0953011 - 财政年份:2010
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
Modular representation theory, triangulated categories and cohomology
模表示论、三角范畴和上同调
- 批准号:
0800940 - 财政年份:2008
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Geometric aspects of representations and cohomology of finite dimensional algebras
有限维代数表示和上同调的几何方面
- 批准号:
0629156 - 财政年份:2005
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Geometric aspects of representations and cohomology of finite dimensional algebras
有限维代数表示和上同调的几何方面
- 批准号:
0500946 - 财政年份:2005
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
An Integrated Model of Contextual Safety, Social Safety, and Social Vigilance as Psychosocial Contributors to Cardiovascular Disease
情境安全、社会安全和社会警惕作为心血管疾病社会心理因素的综合模型
- 批准号:
10749134 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Cognitive imprecision and ageing: experimental investigation of new theories of decision-making
认知不精确与衰老:新决策理论的实验研究
- 批准号:
24K00237 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The neural underpinnings of speech and nonspeech auditory processing in autism: Implications for language
自闭症患者言语和非言语听觉处理的神经基础:对语言的影响
- 批准号:
10827051 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Bilingualism as a cognitive reserve factor: the behavioral and neural underpinnings of cognitive control in bilingual patients with aphasia
双语作为认知储备因素:双语失语症患者认知控制的行为和神经基础
- 批准号:
10824767 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
REU Site: Quantitative Rules of Life: General Theories across Biological Systems
REU 网站:生命的定量规则:跨生物系统的一般理论
- 批准号:
2349052 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Naturalistic Social Communication in Autistic Females: Identification of Speech Prosody Markers
自闭症女性的自然社交沟通:语音韵律标记的识别
- 批准号:
10823000 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
CAREER: Evaluating Theories of Polymer Crystallization by Directly Calculating the Nucleation Barrier in a Polymer Melt
职业:通过直接计算聚合物熔体中的成核势垒来评估聚合物结晶理论
- 批准号:
2338690 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant