Shintani lifts for weakly holomorphic modular forms
Shintani 提升弱全纯模形式
基本信息
- 批准号:237424508
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2013
- 资助国家:德国
- 起止时间:2012-12-31 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modular forms have played a pivotal role in the proof of many groundbreaking theorems, including Wiles's proof of Fermat's Last Theorem and Tunnell's conditional solution to the congruent number problem. A key ingredient in the proof of Tunnell's theorem is the Shintani lift and its adjoint Shimura lift, which map between integral and half-integral weight modular forms.A natural generalization of modular forms is weakly holomorphic modular forms, which exhibit certain weaker growth conditions than classical modular forms. Weakly holomorphic modular forms play an important role in various areas of mathematics and physics, including, for example, Monstrous Moonshine (relating dimensions of irreducible representations of the monster group to Fourier coefficients of the modular j-function). The aim of this project is to extend the Shintani lift to map between spaces of integral and half-integral weight weakly holomorphic modular forms and to understand its applications and interactions with the Hecke operators.
模形式在许多开创性定理的证明中发挥了关键作用,包括怀尔斯对费马大定理的证明和通内尔对全等数问题的条件解。 Tunnell定理证明的一个关键要素是Shintani提升和它的伴随Shimura提升,它们映射在整数和半整数权模形式之间。模形式的自然推广是弱全纯模形式,它表现出比经典模形式更弱的增长条件。 弱全纯模形式在数学和物理学的各个领域都扮演着重要的角色,例如Monte-Moonshine(将怪物群的不可约表示的维数与模j函数的傅里叶系数联系起来)。 这个项目的目的是将Shintani提升扩展到积分和半积分权弱全纯模形式空间之间的映射,并理解其应用和与Hecke算子的相互作用。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Half-integral weight p-adic coupling of weakly holomorphic and holomorphic modular forms
弱全纯和全纯模形式的半积分权p-adic耦合
- DOI:10.1007/s40993-015-0027-1
- 发表时间:2015
- 期刊:
- 影响因子:0.8
- 作者:K. Bringmann;P. Guerzhoy;B. Kane
- 通讯作者:B. Kane
Modular local polynomials
模局部多项式
- DOI:10.4310/mrl.2016.v23.n4.a2
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:K. Bringmann;B. Kane
- 通讯作者:B. Kane
Special values of motivic L-functions and zeta-polynomials for symmetric powers of elliptic curves
椭圆曲线对称幂的动机 L 函数和 zeta 多项式的特殊值
- DOI:10.1186/s40687-017-0114-0
- 发表时间:2017
- 期刊:
- 影响因子:1.2
- 作者:Löbrich, Steffen;Ma, Wenjun;Thorner, Jesse
- 通讯作者:Thorner, Jesse
Shintani lifts and fractional derivatives for harmonic weak Maass forms
- DOI:10.1016/j.aim.2014.01.015
- 发表时间:2014-04
- 期刊:
- 影响因子:1.7
- 作者:K. Bringmann;P. Guerzhoy;B. Kane
- 通讯作者:K. Bringmann;P. Guerzhoy;B. Kane
Number theoretic generalization of the monster denominator formula
怪物分母公式的数论推广
- DOI:10.1088/1751-8121/aa8f5d
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:K. Bringmann;B. Kane;S. Lörich;K. Ono;L. Rolen
- 通讯作者:L. Rolen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr. Kathrin Bringmann其他文献
Professorin Dr. Kathrin Bringmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professorin Dr. Kathrin Bringmann', 18)}}的其他基金
Modular completions of false theta functions
假 theta 函数的模块化补全
- 批准号:
427254952 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
University of the West of Scotland and Hart Lifts Limited
西苏格兰大学和哈特升降机有限公司
- 批准号:
511749 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Knowledge Transfer Partnership
Influence of olympic lifts on the lower-limb force-velocity profile
奥林匹克举重对下肢力-速度曲线的影响
- 批准号:
17K01696 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Restoring Modern Japanese Paintings: A Repairing Principle and a Method for Bonding Scalelike Lifts of Pigment Layers to a Supporting Medium
修复现代日本绘画:将颜料层的鳞片状凸起粘合到支撑介质上的修复原理和方法
- 批准号:
16K13179 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Applications of Equivariant Lifts in Algebraic and Symplectic Geometry
等变升力在代数和辛几何中的应用
- 批准号:
1510518 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Reconstruction of 2 and 3-dimensional closed manifolds by equi-dimensional stable maps and classification of embedding or immersion lifts
通过等维稳定图重建 2 维和 3 维闭流形以及嵌入或浸没提升的分类
- 批准号:
25800032 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Arithmetic applications of Kudla-Millson theta lifts
Kudla-Millson theta 提升的算术应用
- 批准号:
EP/K01174X/1 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grant
The University of Northampton And ACE Lifts Limited
北安普顿大学和 ACE Lifts Limited
- 批准号:
508751 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Knowledge Transfer Partnership
Design of a practical sensor framework for monitoring patient lifts
用于监测病人移位机的实用传感器框架的设计
- 批准号:
429193-2011 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Engage Grants Program
Twistor lifts for submanifolds in quaternion Kaehler manifolds and quaternionic complex differential geometry
四元数凯勒流形和四元复微分几何中子流形的扭转升力
- 批准号:
23540081 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of surfaces in four-dimensional Riemannian manifolds using their twistor lifts
利用扭量升力研究四维黎曼流形中的表面
- 批准号:
20740046 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)