Modular completions of false theta functions

假 theta 函数的模块化补全

基本信息

  • 批准号:
    427254952
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2019
  • 资助国家:
    德国
  • 起止时间:
    2018-12-31 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Modular forms generalize classical trigonometric functions as they are periodic; however they have more symmetries. They play a central role in many areas including algebraic topology, arithmetic geometry, combinatorics, number theory, representation theory, and mathematical physics. The situation is complicated by the fact that often modularity is broken, it is however not alway a priori clear in which way. In this proposal we in particular investigate false theta functions. For these functions, a wrong sgn-factor is introduced which destroys modularity. False theta functions have a long history, going back to Rogers (in the one-dimensional case). Several attempts have been made to understand these functions, but unfortunately, they failed and thus the modularity properties of false theta functions remain unknown. On the other hand, there is a rich history on false theta functions as they occur in many settings and there is thus high demand to understand them. In this proposal I will show how false theta functions can be understood in a modular world. Besides its own interest for number theory, this will have application (for example to combinatorics, physics, and W-algebras) as I will investigate in this proposal.
模形式推广了经典的三角函数,因为它们是周期性的;然而它们有更多的对称性。它们在许多领域中发挥着核心作用,包括代数拓扑学、算术几何学、组合学、数论、表示论和数学物理学。这种情况是复杂的,因为模块化往往被打破,但它并不总是先验清楚的方式。在这个建议中,我们特别研究假θ函数。对于这些函数,引入了一个错误的sgn因子,破坏了模块性。假theta函数有很长的历史,可以追溯到罗杰斯(在一维情况下)。人们曾多次尝试去理解这些函数,但不幸的是,他们失败了,因此假theta函数的模块性属性仍然未知。另一方面,关于假θ函数有着丰富的历史,因为它们发生在许多环境中,因此对理解它们有很高的要求。在这个提议中,我将展示如何在模块化世界中理解错误的theta函数。除了它本身对数论的兴趣之外,这将有应用(例如组合学,物理学和W-代数),正如我将在这个提案中研究的那样。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Kathrin Bringmann其他文献

Professorin Dr. Kathrin Bringmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Kathrin Bringmann', 18)}}的其他基金

Shintani lifts for weakly holomorphic modular forms
Shintani 提升弱全纯模形式
  • 批准号:
    237424508
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

EAGER: Proof-Carrying Code Completions
EAGER:携带证明的代码完成
  • 批准号:
    2403762
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Deformation on equivariant completions of vector groups into Fano varieties and K-stability
向量组等变完成变形为 Fano 簇和 K 稳定性
  • 批准号:
    23K03047
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Metrics and Completions of Triangulated Categories
三角类别的指标和完成情况
  • 批准号:
    EP/V038672/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Path to Information Technology (IT) Practice: Increasing Credential Completions in IT within the Southern Tier of Virginia
信息技术 (IT) 实践之路:提高弗吉尼亚州南部地区 IT 证书的完成率
  • 批准号:
    2055631
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Improving Survey/Cognitive Completions and Home Examination Successes in Wave VI of Add Health
提高 Add Health 第六波中的调查/认知完成度和家庭检查成功率
  • 批准号:
    10753153
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Comprehensive laboratory and numerical investigation of SAGD completions
SAGD 完井的综合实验室和数值研究
  • 批准号:
    488486-2015
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
Engineering Internship Student - Drilling and Completions
工程实习生 - 钻井和完井
  • 批准号:
    529405-2018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
Engineering Internship Student - Drilling and Completions
工程实习生 - 钻井和完井
  • 批准号:
    529408-2018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
Comprehensive laboratory and numerical investigation of SAGD completions
SAGD 完井的综合实验室和数值研究
  • 批准号:
    488486-2015
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
Engineering Internship Student - Drilling and Completions
工程实习生 - 钻井和完井
  • 批准号:
    529409-2018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了