CAREER: High-Frequency Power Electronics for Wireless Power Transfer Systems

职业:用于无线电力传输系统的高频电力电子器件

基本信息

  • 批准号:
    1902130
  • 负责人:
  • 金额:
    $ 35.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

Wireless power transfer (WPT) has the potential to address critical energy issues and improve human quality of life by enabling autonomous charging in applications ranging from electric vehicles (EVs) and robotics to portable electronics and biomedical implants. For example, efficient, small, cost-effective, and safe WPT can drastically reduce the need for expensive and bulky on-board batteries, extend range, and accelerate EV penetration. With road transportation accounting for 22% of the nation's total energy consumption, and EVs having roughly twice the well-to-wheel efficiency of gasoline vehicles, even a 10% EV penetration (versus 0.1% currently) can reduce total U.S. energy consumption by over 1%. Likewise, effective WPT can enable artificial heart pumps without abdominal-wall-penetrating electric cords, avoiding discomfort and potential infections for the 5.1 million people in the U.S. suffering from heart failure. Furthermore, WPT could eliminate the need for cardiac pacemaker battery replacement surgeries for nearly 40,000 people each year. However, for WPT systems to be widely adopted, considerable improvements are needed in their performance, cost, and safety. This integrated research and education career development proposal aims to make fundamental advancements in high frequency (1-100 MHz) power electronics technologies, and leverage exciting WPT applications to ignite the imagination of future engineers. The program's broader educational goals include the training of graduate research students and undergraduates participating through the University of Colorado's (CU) Discovery Learning Apprenticeship Program. Incorporating the research findings into the CU Boulder curriculum and disseminating the findings more broadly through a free online course will enhance the education of students at CU Boulder, community colleges, and elsewhere. The special outreach program for K-12 students, involving them in the development of educational videos, will expose them to the role of power electronics and WPT in improving energy efficiency and quality of life and attract them to pursue STEM careers. To achieve the goal of WPT systems with efficiencies, sizes, and safety comparable to their wired counterparts, the research objectives of this CAREER proposal are to: (i) generalize the new step-superposition (S2) analysis technique introduced by the PI, and use it to better model and optimize high-order resonant converters with multiple inverters and/or rectifiers; (ii) innovate and employ high-order resonant converter topologies with appropriately controlled multiple inverters and rectifiers in inductive and capacitive WPT systems to compensate for changes in coupling and achieve higher efficiency and reduced size, then validate these advantages through a series of experimental prototypes; and (iii) demonstrate feasibility of near-field focusing and enhanced safety through distributed WPT architectures by measuring the reduction in fringing fields in prototypes with different coupler geometries and configurations. This effort enables important innovations and fundamental advances. The step-superposition analysis technique developed here will enable accurate modeling and optimization of high-order resonant converters for WPT applications, as well as other power electronic and complex system applications. Having demonstrated high-order multi-inverter/rectifier resonant converters to provide efficiency benefits in grid-interfaced power electronics, the PI's research will introduce advanced variants that effectively compensate for variations in coupling in WPT systems, while operating at fixed frequency within ISM (i.e., industrial, scientific and medical) frequency bands. The research will also yield a better understanding of near-field phased-array field focusing through distributed couplers designed for field cancellation, and enable dramatic advances in power transfer densities and safety.
无线电力传输(WPT)有潜力解决关键的能源问题,并通过实现从电动汽车(ev)和机器人到便携式电子设备和生物医学植入物的自动充电,改善人类的生活质量。例如,高效、小巧、经济、安全的WPT可以大大减少对昂贵且笨重的车载电池的需求,延长续航里程,加速电动汽车的普及。由于公路运输占美国总能源消耗的22%,而电动汽车从油井到车轮的效率大约是汽油车的两倍,因此即使电动汽车的渗透率达到10%(目前为0.1%),也可以使美国的总能源消耗减少1%以上。同样,有效的WPT可以使人工心脏泵不需要穿过腹壁的电线,避免美国510万心力衰竭患者的不适和潜在感染。此外,WPT每年可以消除近4万人对心脏起搏器电池更换手术的需求。然而,为了使WPT系统得到广泛采用,需要在性能、成本和安全性方面进行相当大的改进。这项综合研究和教育职业发展计划旨在在高频(1-100 MHz)电力电子技术方面取得根本性进展,并利用令人兴奋的WPT应用来点燃未来工程师的想象力。该计划更广泛的教育目标包括通过科罗拉多大学(CU)发现学习学徒计划培训研究生和本科生。将研究成果纳入科罗拉多大学博尔德分校的课程,并通过免费的在线课程更广泛地传播这些发现,将提高科罗拉多大学博尔德分校、社区学院和其他地方学生的教育水平。针对K-12学生的特别外展计划,让他们参与教育视频的开发,将使他们了解电力电子和WPT在提高能源效率和生活质量方面的作用,并吸引他们从事STEM职业。为了实现WPT系统的效率、尺寸和安全性与有线系统相当的目标,本CAREER提案的研究目标是:(i)推广PI引入的新的步进叠加(S2)分析技术,并使用它更好地建模和优化具有多个逆变器和/或整流器的高阶谐振变换器;(ii)在电感式和电容式WPT系统中创新并采用高阶谐振变换器拓扑,并适当控制多个逆变器和整流器,以补偿耦合变化,实现更高的效率和更小的尺寸,然后通过一系列实验原型验证这些优势;(iii)通过测量不同耦合器几何形状和配置的原型中边缘场的减少,论证了通过分布式WPT架构实现近场聚焦和增强安全性的可行性。这一努力促成了重要的创新和根本性的进步。这里开发的阶跃叠加分析技术将使WPT应用以及其他电力电子和复杂系统应用的高阶谐振变换器能够精确建模和优化。在演示了高阶多逆变器/整流谐振变换器在电网接口电力电子中提供效率优势之后,PI的研究将引入先进的变体,有效地补偿WPT系统中耦合的变化,同时在ISM(即工业,科学和医疗)频段内的固定频率下工作。该研究还将通过设计用于场抵消的分布式耦合器,更好地理解近场相控阵场聚焦,并在功率传输密度和安全性方面取得巨大进步。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Khurram Afridi其他文献

Khurram Afridi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Khurram Afridi', 18)}}的其他基金

FuSe/Collaborative Research: Heterogeneous Integration in Power Electronics for High-Performance Computing (HIPE-HPC)
FuSe/合作研究:用于高性能计算的电力电子异构集成 (HIPE-HPC)
  • 批准号:
    2329063
  • 财政年份:
    2023
  • 资助金额:
    $ 35.14万
  • 项目类别:
    Continuing Grant
I-Corps: Dynamic Wireless Charging
I-Corps:动态无线充电
  • 批准号:
    2034004
  • 财政年份:
    2020
  • 资助金额:
    $ 35.14万
  • 项目类别:
    Standard Grant
CAREER: High-Frequency Power Electronics for Wireless Power Transfer Systems
职业:用于无线电力传输系统的高频电力电子器件
  • 批准号:
    1554293
  • 财政年份:
    2016
  • 资助金额:
    $ 35.14万
  • 项目类别:
    Standard Grant

相似国自然基金

转录延伸因子参与粗糙脉孢菌生物钟基因frequency表达调控分子机制的研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Frequency-Constrained Energy Scheduling for Renewable-Dominated Low-Inertia Power Systems
职业:可再生能源为主的低惯量电力系统的频率约束能量调度
  • 批准号:
    2337598
  • 财政年份:
    2024
  • 资助金额:
    $ 35.14万
  • 项目类别:
    Continuing Grant
EPSRC-SFI:Towards power efficient microresonator frequency combs
EPSRC-SFI:迈向节能微谐振器频率梳
  • 批准号:
    EP/X040844/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.14万
  • 项目类别:
    Research Grant
Short-term prediction of power grid frequency
电网频率短期预测
  • 批准号:
    10093036
  • 财政年份:
    2024
  • 资助金额:
    $ 35.14万
  • 项目类别:
    Collaborative R&D
Improving power grid frequency monitoring through high-fidelity continuous-point-on-wave (CPOW) data
通过高保真连续波点 (CPOW) 数据改善电网频率监测
  • 批准号:
    10074122
  • 财政年份:
    2023
  • 资助金额:
    $ 35.14万
  • 项目类别:
    Collaborative R&D
Research on Insulation Properties and Diagnostics for Smart Electric Power Equipment by Measuring Discharge Current Using a Super High Frequency Wideband Measurement System with Picosecond resolution
利用皮秒分辨率超高频宽带测量系统测量放电电流来研究智能电力设备的绝缘性能和诊断
  • 批准号:
    23H01401
  • 财政年份:
    2023
  • 资助金额:
    $ 35.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Dynamic resonant frequency ratio control for high-power piezoelectric devices
高功率压电器件的动态谐振频率比控制
  • 批准号:
    22KJ0822
  • 财政年份:
    2023
  • 资助金额:
    $ 35.14万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Effects of water discharge management associated with power supply development on flood frequency and nutrient distribution in mountainous wetlands
供电开发排水管理对山地湿地洪水频率和养分分布的影响
  • 批准号:
    23K11512
  • 财政年份:
    2023
  • 资助金额:
    $ 35.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Enhancing GaN-on-Si high electron mobility transistor technology for high frequency and high power applications
职业:增强用于高频和高功率应用的硅基氮化镓高电子迁移率晶体管技术
  • 批准号:
    2239302
  • 财政年份:
    2023
  • 资助金额:
    $ 35.14万
  • 项目类别:
    Continuing Grant
CAREER: Toward a wireless power transfer system: high-frequency power electronics
职业:走向无线电力传输系统:高频电力电子器件
  • 批准号:
    2414898
  • 财政年份:
    2023
  • 资助金额:
    $ 35.14万
  • 项目类别:
    Continuing Grant
Development of MHz frequency power converters for resonant capacitive coupling wireless power transmission
开发用于谐振电容耦合无线电力传输的 MHz 频率功率转换器
  • 批准号:
    RGPIN-2018-03795
  • 财政年份:
    2022
  • 资助金额:
    $ 35.14万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了