FuSe/Collaborative Research: Heterogeneous Integration in Power Electronics for High-Performance Computing (HIPE-HPC)

FuSe/合作研究:用于高性能计算的电力电子异构集成 (HIPE-HPC)

基本信息

  • 批准号:
    2329063
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

The energy utilized for computing is more than 2 percent of global energy consumption, and a substantial fraction of it is wasted in the final stages of power delivery to microprocessors. Hence, efficiency improvement and size reduction (to overcome space limitations) are the main objectives for the next generation of power delivery solutions for high-performance computing. These require switches and inductors that can support higher voltages, currents, and frequencies with lower losses. Silicon (Si) complementary metal-oxide semiconductor (CMOS) technology can provide a high level of integration and control, but Si CMOS switches have higher switching losses. Wide-bandgap semiconductor materials enable better switches, but they cannot be easily integrated with the Si CMOS process. High-performance power delivery solutions also require compact integrated inductors that can support higher power, higher frequencies for miniaturization, and lower core losses. This Future of Semiconductors (FuSe) project uses co-designing and heterogeneous integration of wide-bandgap semiconductor devices and on-chip ferrite inductors with CMOS technology and a new power conversion architecture to develop next-generation integrated power delivery systems for high-performance computing. The project will have a significant scientific and societal impact by contributing to the technological foundations of highly efficient backside integrated power delivery systems for high-performance computing and enhancing US competitiveness in semiconductor manufacturing. The project will also strengthen the education of graduate and undergraduate students on essential topics of semiconductors, magnetics, power electronics, integrated circuits, high-performance computing, among other core technologies. An extensive workforce development program is also planned to attract students to the fields related to this project and to educate people already working in the industry with an emphasis on underrepresented groups. Outcome evaluation of the project’s research, education, and workforce development activities will be carried out using internal and external surveys for qualitative and quantitative data.The 3D heterogeneous integration of power electronics for high-performance computing will be realized by leveraging an interposer having integrated magnetic inductors with new spin spray deposited ferrites, advanced high-voltage GaN switches, a novel single-stage point-of-load power converter architecture, and integrated high-voltage constant-frequency phase-shift control circuits in CMOS. Spin spray deposition of ferrites enables integrated thick ferrite films on-chip with a high relative permeability of ~3000 from aqueous solutions with readily tailored compositions at low temperatures of ~90C for integrated inductors and transformers on Si, printed circuit board, or other substrates for integrated power electronics. The high-voltage enhancement-mode GaN devices will utilize 3D sculptured field management to achieve record power figure-of-merits. The single-stage point-of-load conversion architecture can maintain zero-voltage and near-zero current switching across wide voltage and power ranges and enables high power density with high and flat efficiencies. Co-design of the power conversion architecture, CMOS integrated-circuits-based control, high-performance GaN switches, interposer with integrated magnetic components, and magnetic materials will help achieve compact and highly efficient integrated backside point-of-load power electronics for high-performance computing. This convergent co-design will be conducted by a qualified team with complementary expertise, ranging from wide-bandgap semiconductor switches, magnetic materials and integrated magnetic components, CMOS control circuits, and power conversion architectures. This activity will also result in new co-design methodologies leveraging circuit simulation and multi-physics analysis, and design tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
用于计算的能源占全球能源消耗的2%以上,其中很大一部分浪费在向微处理器供电的最后阶段。因此,提高效率和减小尺寸(以克服空间限制)是下一代高性能计算功率传输解决方案的主要目标。这些要求开关和电感器能够以较低的损耗支持较高的电压、电流和频率。硅(Si)互补金属氧化物半导体(CMOS)技术可以提供高水平的集成度和控制,但是Si CMOS开关具有较高的开关损耗。宽带隙半导体材料能够实现更好的开关,但它们不能容易地与Si CMOS工艺集成。高性能功率传输解决方案还需要紧凑型集成电感器,这些电感器可以支持更高的功率、更高的小型化频率以及更低的磁芯损耗。该Future of Semiconductors(FuSe)项目采用CMOS技术和新的电源转换架构,对宽带隙半导体器件和片上铁氧体电感进行协同设计和异构集成,以开发下一代集成电源传输系统,实现高性能计算。该项目将产生重大的科学和社会影响,为高性能计算的高效背面集成功率传输系统的技术基础做出贡献,并提高美国在半导体制造业的竞争力。该项目还将加强研究生和本科生在半导体、磁学、电力电子、集成电路、高性能计算等核心技术方面的教育。还计划实施一项广泛的劳动力发展方案,以吸引学生进入与该项目有关的领域,并教育已经在该行业工作的人,重点是代表性不足的群体。将通过内部和外部调查的定性和定量数据,对该项目的研究、教育和劳动力发展活动进行成果评估。将利用具有集成磁电感器的中介层,实现高性能计算的电力电子的3D异构集成,该中介层具有新型自旋喷射沉积铁氧体,先进的高压GaN开关,一种新颖的单级负载点功率转换器架构,以及CMOS中集成的高压恒频相移控制电路。铁氧体的旋喷沉积使得能够在芯片上集成厚铁氧体膜,其在水溶液中具有约3000的高相对磁导率,具有易于在约90 ° C的低温下定制的组成,用于Si、印刷电路板或用于集成电力电子的其他衬底上的集成电感器和变压器。高压增强型GaN器件将利用3D雕刻场管理来实现创纪录的功率品质因数。单级负载点转换架构可在宽电压和功率范围内保持零电压和近零电流开关,并实现高功率密度和高平坦效率。功率转换架构、基于CMOS集成电路的控制、高性能GaN开关、集成磁性元件的插入器和磁性材料的协同设计将有助于实现紧凑高效的集成背侧负载点功率电子器件,以实现高性能计算。这种融合的协同设计将由一个具有互补专业知识的合格团队进行,范围包括宽带隙半导体开关、磁性材料和集成磁性元件、CMOS控制电路和功率转换架构。这项活动还将产生利用电路仿真和多物理场分析的新的协同设计方法和设计工具。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Khurram Afridi其他文献

Khurram Afridi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Khurram Afridi', 18)}}的其他基金

I-Corps: Dynamic Wireless Charging
I-Corps:动态无线充电
  • 批准号:
    2034004
  • 财政年份:
    2020
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
CAREER: High-Frequency Power Electronics for Wireless Power Transfer Systems
职业:用于无线电力传输系统的高频电力电子器件
  • 批准号:
    1902130
  • 财政年份:
    2018
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
CAREER: High-Frequency Power Electronics for Wireless Power Transfer Systems
职业:用于无线电力传输系统的高频电力电子器件
  • 批准号:
    1554293
  • 财政年份:
    2016
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant

相似国自然基金

微尺度光-酶协同催化流动反应过程及其强化机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于复合相变界面材料及微通道结构调控协同散热研究
  • 批准号:
    JCZRLH202500111
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于重大疫病多点触发医防融合防控策略研究
  • 批准号:
    JCZRLH202501258
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
酵母可溶性多糖协同益生菌增效机制的研究
  • 批准号:
    JCZRLH202500927
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
北斗星地协同地质灾害智慧防控和应急技术研究
  • 批准号:
    JCZRLH202500581
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
面向具身智能的灵巧手多指协同主动触觉感知机制研究
  • 批准号:
    JCZRQN202500196
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
载铁生物炭对土壤镉污染的吸附固定及微生物协同作用机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
数字经济赋能重庆制造业供应链协同减排的机制设计与实施路径研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
电氢综合能源系统时空协同调控关键技术研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于群体博弈与深度强化学习的USV-AUV异构系统协同控制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Indium selenides based back end of line neuromorphic accelerators
合作研究:FuSe:基于硒化铟的后端神经形态加速器
  • 批准号:
    2328741
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Interconnects with Co-Designed Materials, Topology, and Wire Architecture
合作研究:FuSe:与共同设计的材料、拓扑和线路架构互连
  • 批准号:
    2328906
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Interconnects with Co-Designed Materials, Topology, and Wire Architecture
合作研究:FuSe:与共同设计的材料、拓扑和线路架构互连
  • 批准号:
    2328908
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Collaborative Optically Disaggregated Arrays of Extreme-MIMO Radio Units (CODAeMIMO)
合作研究:FuSe:Extreme-MIMO 无线电单元的协作光学分解阵列 (CODAeMIMO)
  • 批准号:
    2328947
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
  • 批准号:
    2329087
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Monolithic 3D Integration (M3D) of 2D Materials-Based CFET Logic Elements towards Advanced Microelectronics
合作研究:FuSe:面向先进微电子学的基于 2D 材料的 CFET 逻辑元件的单片 3D 集成 (M3D)
  • 批准号:
    2329189
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了