New Structures in Homological Commutative Algebra
同调交换代数的新结构
基本信息
- 批准号:1902123
- 负责人:
- 金额:$ 25.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Solving polynomial equations is one of the oldest and most fundamental topics in mathematics. One might expect that equations would grow ever more complex as the number of variables increases; in fact, this sort of phenomenon is known as the "curse of dimensionality" and it is very common in mathematics. However, recent work of Ananyan and Hochster has shown that this does not happen: under a certain regime, the complexity of solving equations does not increase as the number of variables increases. In fact in some ways, the problem even becomes simpler. In this project, the PI will try to carry the core insights of Ananyan and Hochster to new types of equations. This would sharpen our understanding of the structure of systems of equations, with the potential for both theoretical and computational applications.The recent progress on Stillman's Conjecture has led to a plethora of new bounded results in algebra, many of which are modern twists on classical results of Hilbert. In previous work, the PI had constructed new limit rings, involving inverse limits and ultraproducts, and applied these limit rings to homological questions in commutative algebra. This led to two new proofs of Stillman's Conjecture. The PI proposes developing similar new frameworks for regular local rings and for coherent sheaves on projective space. The intellectual merit of this project would primarily come through the broad array of boundedness results this would yield for regular local rings and for cohomology of coherent sheaves on projective space This project will also have impacts on K-12 education through the PI's leadership of the Madison Math Circle, an outreach program that provides a taste of exciting ideas in math and science to high school and advanced middle school students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
求解多项式方程是数学中最古老、最基本的课题之一。人们可能会认为,随着变量数量的增加,方程会变得越来越复杂;事实上,这种现象被称为“维度诅咒”,在数学中非常常见。然而,Ananyan和Hochster最近的工作表明,这种情况并没有发生:在一定的制度下,求解方程的复杂性不会随着变量数量的增加而增加。事实上,在某些方面,这个问题甚至变得更简单了。在这个项目中,PI将尝试将Ananyan和Hochster的核心见解应用到新型方程中。这将加深我们对方程组结构的理解,具有理论和计算应用的潜力。斯蒂尔曼猜想的最新进展导致了代数中大量新的有界结果,其中许多是对希尔伯特经典结果的现代扭曲。在以前的工作中,PI构造了新的极限环,涉及逆极限和超积,并将这些极限环应用于交换代数中的同调问题。这导致了斯蒂尔曼猜想的两个新的证明。PI建议为正则局部环和射影空间上的凝聚层建立类似的新框架。这个项目的智力价值将主要来自于广泛的有界性结果,这将产生规则局部环和射影空间上凝聚层的上同调。该项目还将通过PI对Madison Math Circle的领导对K-12教育产生影响,Madison Math Circle是一个扩展项目,为高中和高级中学生提供令人兴奋的数学和科学想法。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Equivariant Hilbert Basis Theorem
等变希尔伯特基本定理
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:1
- 作者:Erman, Daniel;Sam, Steven;Snowden, Andrew
- 通讯作者:Snowden, Andrew
Virtual resolutions for a product of projective spaces
射影空间乘积的虚拟分辨率
- DOI:10.14231/ag-2020-013
- 发表时间:2020
- 期刊:
- 影响因子:1.5
- 作者:Erman, Daniel
- 通讯作者:Erman, Daniel
Small projective spaces and Stillman uniformity for sheaves
- DOI:10.14231/ag-2021-010
- 发表时间:2021-05-01
- 期刊:
- 影响因子:1.5
- 作者:Erman, Daniel;Sam, Steven, V;Snowden, Andrew
- 通讯作者:Snowden, Andrew
Big Polynomial Rings with Imperfect Coefficient Fields
具有不完美系数域的大多项式环
- DOI:10.1307/mmj/1603353740
- 发表时间:2021
- 期刊:
- 影响因子:0.9
- 作者:Erman, Daniel;Sam, Steven V;Snowden, Andrew
- 通讯作者:Snowden, Andrew
Characteristic Dependence of Syzygies of Random Monomial Ideals
随机单项式理想的对称性的特征依赖性
- DOI:10.1137/21m1392474
- 发表时间:2022
- 期刊:
- 影响因子:0.8
- 作者:Booms-Peot, Caitlyn;Erman, Daniel;Yang, Jay
- 通讯作者:Yang, Jay
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Erman其他文献
Linear strands of multigraded free resolutions
多级自由分辨率的线性链
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:1.4
- 作者:
Michael K. Brown;Daniel Erman - 通讯作者:
Daniel Erman
Conjectures and Computations about Veronese Syzygies
关于 Veronese Syzygies 的猜想和计算
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0.5
- 作者:
Juliette Bruce;Daniel Erman;Steve Goldstein;Jay Yang - 通讯作者:
Jay Yang
Syzygies of math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math"msupmrowmi mathvariant="double-struck"P/mi/mrowmrowmn1/mn/mrow/msupmo×/momsupmrowmi mathvariant="double-struck"P/mi/mrowmrowmn1/mn/mrow/msup/math: Data and conjectures
数学中的对合关系 xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math"msupmrowmi mathvariant="double-struck"P/mi/mrowmrowmn1/mn/mrow/msupmo×/momsupmrowmi mathvariant="double-struck"P/mi/mrowmrowmn1/mn/mrow/msup/math: 数据与猜想
- DOI:
10.1016/j.jalgebra.2021.10.023 - 发表时间:
2022-03-01 - 期刊:
- 影响因子:0.800
- 作者:
Juliette Bruce;Daniel Corey;Daniel Erman;Steve Goldstein;Robert P. Laudone;Jay Yang - 通讯作者:
Jay Yang
Syzygies of <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math"><msup><mrow><mi mathvariant="double-struck">P</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>×</mo><msup><mrow><mi mathvariant="double-struck">P</mi></mrow><mrow><mn>1</mn></mrow></msup></math>: Data and conjectures
- DOI:
10.1016/j.jalgebra.2021.10.023 - 发表时间:
2022-03-01 - 期刊:
- 影响因子:
- 作者:
Juliette Bruce;Daniel Corey;Daniel Erman;Steve Goldstein;Robert P. Laudone;Jay Yang - 通讯作者:
Jay Yang
Shapes of free resolutions over a local ring
- DOI:
10.1007/s00208-011-0760-2 - 发表时间:
2011-11-23 - 期刊:
- 影响因子:1.400
- 作者:
Christine Berkesch;Daniel Erman;Manoj Kummini;Steven V. Sam - 通讯作者:
Steven V. Sam
Daniel Erman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Erman', 18)}}的其他基金
Conference: GAeL 2023 (Geometrie Algebrique en Liberte)
会议:GAeL 2023(Geometrie Algebrique en Liberte)
- 批准号:
2309424 - 财政年份:2023
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
Asymptotic Commutative Algebra and Multigraded Syzygies
渐近交换代数和多级 Syzygies
- 批准号:
1601619 - 财政年份:2016
- 资助金额:
$ 25.35万 - 项目类别:
Continuing Grant
Theory and Applications of Syzygies
Syzygies的理论与应用
- 批准号:
1501249 - 财政年份:2015
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
Conference: Upper Midwest Commutative Algebra Colloquium; University of Wisconsin; November 14, 2015; University of Minnesota; April 2016
会议:上中西部交换代数座谈会;
- 批准号:
1549554 - 财政年份:2015
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
The structure of free resolutions in commutative algebra and algebraic geometry
交换代数和代数几何中自由解析的结构
- 批准号:
1302057 - 财政年份:2013
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
相似海外基金
Design of metal structures of custom composition using additive manufacturing
使用增材制造设计定制成分的金属结构
- 批准号:
2593424 - 财政年份:2025
- 资助金额:
$ 25.35万 - 项目类别:
Studentship
Optimisation of Buildable Structures for 3D Concrete Printing
3D 混凝土打印可建造结构的优化
- 批准号:
DP240101708 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Discovery Projects
PriorCircuit:Circuit mechanisms for computing and exploiting statistical structures in sensory decision making
PriorCircuit:在感官决策中计算和利用统计结构的电路机制
- 批准号:
EP/Z000599/1 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Research Grant
Tunable Tensegrity Structures and Metamaterials
可调谐张拉整体结构和超材料
- 批准号:
2323276 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
CAREER: Emergence of in-liquid structures in metallic alloys by nucleation and growth
职业:通过成核和生长在金属合金中出现液态结构
- 批准号:
2333630 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Continuing Grant
Nonlocal Elastic Metamaterials: Leveraging Intentional Nonlocality to Design Programmable Structures
非局域弹性超材料:利用有意的非局域性来设计可编程结构
- 批准号:
2330957 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
CAREER: High-Resolution Hybrid Printing of Wearable Heaters with Shape-Changeable Structures
职业:具有可变形结构的可穿戴加热器的高分辨率混合打印
- 批准号:
2340414 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
Algebraic Structures in String Topology
弦拓扑中的代数结构
- 批准号:
2405405 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Continuing Grant
Development of an entirely Lagrangian hydro-elastoviscoplastic FSI solver for design of resilient ocean/coastal structures
开发完全拉格朗日水弹粘塑性 FSI 求解器,用于弹性海洋/沿海结构的设计
- 批准号:
24K07680 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)