The Subconvexity Problem
次凸问题
基本信息
- 批准号:1902173
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Prime numbers are of fundamental importance in mathematics, as every number can be uniquely written as a product of primes. A mysterious feature of prime numbers is that the statistics of how they are distributed is similar to what a random sequence of numbers would produce. This is despite the fact that whether a number is prime or not is in no respect random. L-functions are mathematical objects that conjecturally allow us to understand this statistical feature of primes and other objects from the theory of numbers. This project investigates an important conjecture about L-functions, known as the subconvexity problem, which states that the values taken by these L-functions are smaller than expected. If true, it would be an important step in unlocking the statistical information that L- functions contain.The aim of this award is to make progress on the subconvexity problem for L-functions in higher rank, and to prove subconvexity for as wide a range of automorphic forms as possible. The project will focus on the groups U(n+1) x U(n) and GL(n+1) x GL(n). The PI will approach the problem using arithmetic amplification, representation theory, and ideas from microlocal analysis. A key role will be played by microlocal lifts. The methods used will not depend on the rank of the group in an essential way.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
素数在数学中具有根本的重要性,因为每个数都可以被唯一地写成素数的乘积。素数的一个神秘特征是,它们如何分布的统计数据与随机数字序列产生的结果相似。尽管一个数是否是质数在任何方面都不是随机的。L函数是数学对象,它使我们能够从数论中理解素数和其他对象的统计特征。这个项目研究了关于L-函数的一个重要猜想,称为次凸性问题,它指出这些L-函数所取的值小于预期。如果这是真的,这将是一个重要的一步解锁的统计信息,L-函数包含。这个奖项的目的是取得进展的次凸性问题的L-函数在更高的排名,并证明次凸性的范围尽可能广泛的自守形式。该项目将侧重于U(n+1)x U(n)和GL(n+1)x GL(n)组。PI将使用算术放大、表征理论和来自微局部分析的思想来解决问题。微型地方电梯将发挥关键作用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lower bounds for Maass forms on semisimple groups
半单群上 Maass 形式的下界
- DOI:10.1112/s0010437x20007125
- 发表时间:2020
- 期刊:
- 影响因子:1.8
- 作者:Brumley, Farrell;Marshall, Simon
- 通讯作者:Marshall, Simon
Bounds for the Number of Cohomological Automorphic Representations of GL3/ℚ in the Weight Aspect
权重方面 GL3/α 的上同调自同构表示数的界限
- DOI:10.1093/imrn/rnaa048
- 发表时间:2020
- 期刊:
- 影响因子:1
- 作者:Marshall, Simon
- 通讯作者:Marshall, Simon
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simon Marshall其他文献
Another Simple Proof of the High Girth, High Chromatic Number Theorem
- DOI:
10.1080/00029890.2008.11920498 - 发表时间:
2008-01 - 期刊:
- 影响因子:0
- 作者:
Simon Marshall - 通讯作者:
Simon Marshall
Bounds for the multiplicities of cohomological automorphic forms on GL2
GL2 上同调自同构形式的重数界限
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Simon Marshall - 通讯作者:
Simon Marshall
Geodesic restrictions of arithmetic eigenfunctions
算术本征函数的测地线限制
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Simon Marshall - 通讯作者:
Simon Marshall
Triple product L-functions and quantum chaos on SL(2, ℂ)
SL(2, ℂ) 上的三重积 L 函数和量子混沌
- DOI:
10.1007/s11856-014-1044-9 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Simon Marshall - 通讯作者:
Simon Marshall
Endoscopy and cohomology growth on U(3)
U(3) 上的内窥镜检查和上同调增长
- DOI:
10.1112/s0010437x13007720 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Simon Marshall - 通讯作者:
Simon Marshall
Simon Marshall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simon Marshall', 18)}}的其他基金
Fourier Integral Operators and Maximal Functions in Harmonic Analysis
调和分析中的傅里叶积分算子和极大函数
- 批准号:
1954479 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Semiclassical Analysis, Amplification, and Subconvexity
半经典分析、放大和次凸
- 批准号:
1501230 - 财政年份:2015
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
The Geometry and Global Analysis of Arithmetic Manifolds
算术流形的几何和全局分析
- 批准号:
1509331 - 财政年份:2014
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
The Geometry and Global Analysis of Arithmetic Manifolds
算术流形的几何和全局分析
- 批准号:
1201321 - 财政年份:2012
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似海外基金
Hilbert's Sixth Problem: From Particles to Waves
希尔伯特第六个问题:从粒子到波
- 批准号:
2350242 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
BETTERXPS - Tackling the Peak Assignment Problem in X-ray Photoelectron Spectroscopy with First Principles Calculations
BETTERXPS - 通过第一原理计算解决 X 射线光电子能谱中的峰分配问题
- 批准号:
EP/Y036433/1 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Research Grant
Barking up the right trees – A microbial solution for our methane problem
树皮正确 — 解决甲烷问题的微生物解决方案
- 批准号:
DE240100338 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Discovery Early Career Researcher Award
Hunting Dark Satellites Problem:ダークマターパラドクスの解明
寻找暗卫星问题:解开暗物质悖论
- 批准号:
24K07085 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Is to achieve a breakthrough in the problem of how to reliably control the many qubits in an errorfree and scalable way.
就是要在如何以无错误且可扩展的方式可靠地控制众多量子比特的问题上取得突破。
- 批准号:
2906479 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Studentship
CAREER: Inviting all 21st century problem-solvers: Building equity by de-tracking middle school mathematics instruction
职业:邀请所有 21 世纪的问题解决者:通过打破中学数学教学的轨道来建立公平
- 批准号:
2336391 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
MCA: Problem-Based Learning for Warehousing and Order Fulfillment
MCA:基于问题的仓储和订单履行学习
- 批准号:
2322250 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Promise Constraint Satisfaction Problem: Structure and Complexity
承诺约束满足问题:结构和复杂性
- 批准号:
EP/X033201/1 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Fellowship
Solvability of Parabolic Regularity problem in Lebesgue spaces
勒贝格空间中抛物线正则问题的可解性
- 批准号:
EP/Y033078/1 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Research Grant
Towards a practical quantum advantage: Confronting the quantum many-body problem using quantum computers
迈向实用的量子优势:使用量子计算机应对量子多体问题
- 批准号:
EP/Y036069/1 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Research Grant