Solvability of Parabolic Regularity problem in Lebesgue spaces
勒贝格空间中抛物线正则问题的可解性
基本信息
- 批准号:EP/Y033078/1
- 负责人:
- 金额:$ 9.78万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The main objective of this proposal is to meet this need and develop novel mathematical ideas for parabolic partial differential equations with rough coefficients which occur frequently in real applications (such as physics and engineering).In recent years substantial progress has been achieved in our understanding of partial differential equations with rough coefficients and associated boundary value problems. The motivation to study equations with rough (or low regularity) coefficients is twofold. In many "real life" models, such as in materials science, the coefficients can be discontinuous (for example modelling impurities in the materials or cracks).The proposal addresses one aspect from wide field of open problems that concerns the Regularity problem for these equations.
本文的主要目的是为解决真实的应用(如物理和工程)中经常出现的具有粗糙系数的抛物型偏微分方程问题提供新的数学思想。研究具有粗糙(或低正则性)系数的方程的动机是双重的。在许多“真实的生活”模型中,例如在材料科学中,系数可能是不连续的(例如对材料中的杂质或裂纹进行建模)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Dindos其他文献
Martin Dindos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Dindos', 18)}}的其他基金
Maths Research Associates 2021 Edinburgh
数学研究助理 2021 爱丁堡
- 批准号:
EP/W522648/1 - 财政年份:2021
- 资助金额:
$ 9.78万 - 项目类别:
Research Grant
Solvability of elliptic partial differential equations with rough coefficients; the boundary value problems
具有粗糙系数的椭圆偏微分方程的可解性;
- 批准号:
EP/J017450/1 - 财政年份:2012
- 资助金额:
$ 9.78万 - 项目类别:
Research Grant
Solving partial differential equations and systems by techniques of harmonic analysis
通过调和分析技术求解偏微分方程和系统
- 批准号:
EP/F014589/1 - 财政年份:2007
- 资助金额:
$ 9.78万 - 项目类别:
Research Grant
相似国自然基金
李超代数的parabolic范畴O的若干问题
- 批准号:11371278
- 批准年份:2013
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Discrete Maximal Parabolic Regularity for Time Discontinuous Galerkin Methods with Applications
时间不连续伽辽金方法的离散最大抛物线正则及其应用
- 批准号:
1913133 - 财政年份:2019
- 资助金额:
$ 9.78万 - 项目类别:
Standard Grant
Regularity theory for elliptic and parabolic free boundary problems
椭圆和抛物线自由边界问题的正则理论
- 批准号:
417627993 - 财政年份:2019
- 资助金额:
$ 9.78万 - 项目类别:
Research Grants
Regularity vs. Singularity for Elliptic and Parabolic Systems
椭圆和抛物线系统的正则性与奇异性
- 批准号:
1854788 - 财政年份:2019
- 资助金额:
$ 9.78万 - 项目类别:
Standard Grant
Parabolic Obstacle-Type Problems: Regularity, Existence, and Deviation
抛物线障碍类型问题:规律性、存在性和偏差
- 批准号:
407265145 - 财政年份:2018
- 资助金额:
$ 9.78万 - 项目类别:
Research Grants
Boundary regularity for elliptic and parabolic equations
椭圆方程和抛物方程的边界正则性
- 批准号:
18J00965 - 财政年份:2018
- 资助金额:
$ 9.78万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Regularity for doubly nonlinear degenerate and singular parabolic equations and a geometric flow
双非线性简并和奇异抛物线方程和几何流的正则性
- 批准号:
18K03375 - 财政年份:2018
- 资助金额:
$ 9.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regularity for solutions to quasilinear degenerate parabolic-hyperbolic stochastic partial differential equations (SPDEs) driven by nonlinear multipli
由非线性乘法驱动的拟线性简并抛物双曲随机偏微分方程 (SPDE) 解的正则性
- 批准号:
1939627 - 财政年份:2017
- 资助金额:
$ 9.78万 - 项目类别:
Studentship
Besov regularity of parabolic differential equations on Lipschitz domains
Lipschitz 域上抛物型微分方程的 Besov 正则
- 批准号:
320243287 - 财政年份:2016
- 资助金额:
$ 9.78万 - 项目类别:
Research Grants
Mathematical analysis for concrete carbonation applying the regularity of a solution of quasi-linear parabolic equations
应用拟线性抛物型方程解的规律性对混凝土碳化进行数学分析
- 批准号:
16K17636 - 财政年份:2016
- 资助金额:
$ 9.78万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Existence and regularity for parabolic quasi minimizers on metric measure spaces
度量测度空间上抛物线拟极小化器的存在性和正则性
- 批准号:
271596446 - 财政年份:2015
- 资助金额:
$ 9.78万 - 项目类别:
Research Grants