Elliptic Curves and Cohomological Automorphic Forms over CM Fields
CM 域上的椭圆曲线和上同调自同构
基本信息
- 批准号:1902155
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The study of symmetry pervades mathematics. In number theory, interesting symmetries exist among algebraic numbers, numbers which are roots of polynomials with integer coefficients. These symmetries underpin a surprising connection, known as Langlands reciprocity, between arithmetic, geometry, and analysis. The resulting bridges constructed between seemingly disparate areas bring powerful analytic and algebraic tools to bear on arithmetic questions. This project aims to establish new cases Langlands reciprocity, and to apply the resulting tools to questions in number theory.Proving automorphy of Galois representations is an important theme in modern algebraic number theory, and is currently the only known technique that establishes many conjectural properties of arithmetic L-functions. Part of this project aims to establish automorphy of many elliptic curves over imaginary quadratic fields, or more generally CM number fields. The second part of this project aims to refine our knowledge of local-global compatibility in the Langlands program over CM fields. This finer compatibility will then be applied to the study of adjoint Selmer groups in the third part of this project, establishing cases of conjectures of Bloch-Kato and Perrin-Riou, as well as having applications to a program of Venkatesh.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对对称性的研究遍及数学。在数论中,有趣的对称性存在于代数数之间,这些数是整数系数多项式的根。这些对称性支撑了算术、几何和分析之间的一种令人惊讶的联系,即朗兰兹互易性。由此产生的桥梁之间建立看似不同的领域带来了强大的分析和代数工具承担算术问题。这个项目的目的是建立新的情况下朗兰兹互惠,并将由此产生的工具应用到数论的问题。证明伽罗瓦表示的自同构是现代代数数论的一个重要主题,是目前唯一已知的技术,建立了算术L-函数的许多几何性质。这个项目的一部分目的是建立自同构的许多椭圆曲线在虚二次域,或更一般的CM数域。这个项目的第二部分旨在完善我们的知识,本地全球的兼容性在朗兰兹计划CM领域。这种更好的兼容性将被应用到本项目第三部分的相邻塞尔默组的研究中,建立布洛赫-加藤和佩林-里乌的案例,以及对Venkatesh计划的应用。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shiang Tang其他文献
Shiang Tang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Quantifying Genetic and Ecological Constraints on the Evolution of Thermal Performance Curves
职业:量化热性能曲线演变的遗传和生态约束
- 批准号:
2337107 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Euler Systems, Iwasawa Theory, and the Arithmetic of Elliptic Curves
欧拉系统、岩泽理论和椭圆曲线算术
- 批准号:
2401321 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
CAREER: Accelerating Algorithms for Computing Isogenies and Endomorphisms of Supersingular Elliptic Curves
职业:加速计算超奇异椭圆曲线同构和自同态的算法
- 批准号:
2340564 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Combinatorics of Complex Curves and Surfaces
复杂曲线和曲面的组合
- 批准号:
2401104 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Super Quantum Curves and Super Voros Coefficients
超级量子曲线和超级 Voros 系数
- 批准号:
22KJ0715 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Random curves and surfaces with conformal symmetries
具有共形对称性的随机曲线和曲面
- 批准号:
2246820 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
The embedded topology of projective plane curves and the generalization of splitting invariants
射影平面曲线的嵌入拓扑和分裂不变量的推广
- 批准号:
23K03042 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
- 批准号:
23K12949 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Diversified study on Manin's conjecture for rational points/rational curves/motives
马宁有理点/有理曲线/动机猜想的多元化研究
- 批准号:
23H01067 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Conference: 1, 2, 3: Curves, Surfaces, and 3-Manifolds
会议:1,2,3:曲线、曲面和 3-流形
- 批准号:
2246832 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant