Conference: 1, 2, 3: Curves, Surfaces, and 3-Manifolds

会议:1,2,3:曲线、曲面和 3-流形

基本信息

  • 批准号:
    2246832
  • 负责人:
  • 金额:
    $ 2.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

This NSF award provides partial support for U.S. based participants of a conference titled "1, 2, 3; Curves, Surfaces, and 3-Manifolds" in Nahsholim Israel and the Technion Institute of Technology, May 7-11, 2023. The goal of the conference is to bring together researchers at all career stages to discuss intersections in geometry and topology in dimensions 1, 2, and 3. These topics have become intimately intertwined over the past 40 years, and have provided the impetus for the much of the development of entire fields of mathematics, such as geometric group theory. Importantly, the conference will also include workshop-style talks aimed at helping bridge the gap between seasoned researchers and the next generation of mathematicians.The confluence of topology and geometry of three dimensional manifolds, and the geometric properties of mapping class groups, has been intensively studied over the last several decades and is of central importance in a variety of mathematical disciplines. For example, hyperbolic 3-manifolds are often governed by certain surfaces contained in them. These surfaces inherit their own hyperbolic structures from their inclusion into the 3-manifold, and these structures are very coarsely encoded by collections of curves on the surface. Miraculously, in key situations, the hyperbolic 3-manifold can be reconstituted from this collection of curves--this is the essential content of the Ending Lamination Theorem. The mathematics developed to study curves used in the proof of this theorem simultaneously provide a powerful toolkit for studying mapping class groups of surfaces. Abstractions of these tools now provide the framework for studying a very large and robust class of groups from a geometric perspective. More details can be found on the conference website: https://cms-math.net.technion.ac.il/123-curves-surfaces-and-3-manifolds/This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该NSF奖项为2023年5月7日至11日在以色列Nahsholim和理工学院举办的名为“1、2、3;曲线、曲面和3-流形”的会议的美国与会者提供部分支持。会议的目标是聚集所有职业生涯阶段的研究人员,讨论1维、2维和3维几何和拓扑学的交集。在过去的40年里,这些主题已经紧密地交织在一起,并为整个数学领域的许多发展提供了动力,例如几何群论。重要的是,会议还将包括研讨会式的演讲,旨在帮助弥合经验丰富的研究人员和新一代数学家之间的差距。三维流形的拓扑和几何的融合,以及映射类群的几何性质,在过去几十年中得到了深入的研究,在各种数学学科中具有核心意义。例如,双曲3-流形通常由其中包含的某些曲面所支配。这些曲面从包含到三维流形中继承了它们自己的双曲结构,并且这些结构由曲面上的曲线集合非常粗略地编码。奇迹般地,在关键情况下,双曲三维流形可以从这组曲线中重构出来--这是结束分层定理的基本内容。为研究用于证明这一定理的曲线而发展起来的数学同时为研究映射类曲面群提供了一个强大的工具包。这些工具的抽象现在为从几何角度研究非常庞大和健壮的一类群体提供了框架。更多细节可以在会议网站上找到:https://cms-math.net.technion.ac.il/123-curves-surfaces-and-3-manifolds/This奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Leininger其他文献

Christopher Leininger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Leininger', 18)}}的其他基金

Problems in geometry, topology, and group theory
几何、拓扑和群论问题
  • 批准号:
    2305286
  • 财政年份:
    2023
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Continuing Grant
Geometry, groups, and dynamics
几何、群和动力学
  • 批准号:
    2106419
  • 财政年份:
    2020
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
Combinatorial and Algebraic Aspects of Geometric Structures
几何结构的组合和代数方面
  • 批准号:
    1922091
  • 财政年份:
    2019
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
2019 Graduate Student Topology and Geometry Conference
2019年研究生拓扑与几何会议
  • 批准号:
    1856681
  • 财政年份:
    2019
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
Geometry, groups, and dynamics
几何、群和动力学
  • 批准号:
    1811518
  • 财政年份:
    2018
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
Geometry, group theory, and dynamics
几何、群论和动力学
  • 批准号:
    1510034
  • 财政年份:
    2015
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
Geometry, topology and group theory in low dimensions.
低维几何、拓扑和群论。
  • 批准号:
    1207183
  • 财政年份:
    2012
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
Geometry, topology and group theory of surfaces
曲面的几何、拓扑和群论
  • 批准号:
    0905748
  • 财政年份:
    2009
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
Geometry and the mapping class group
几何和映射类组
  • 批准号:
    0603881
  • 财政年份:
    2006
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Continuing Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0202348
  • 财政年份:
    2002
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Fellowship Award

相似海外基金

Combinatorics of Complex Curves and Surfaces
复杂曲线和曲面的组合
  • 批准号:
    2401104
  • 财政年份:
    2024
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
Random curves and surfaces with conformal symmetries
具有共形对称性的随机曲线和曲面
  • 批准号:
    2246820
  • 财政年份:
    2023
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Continuing Grant
Combinatorics of Complex Curves and Surfaces
复杂曲线和曲面的组合
  • 批准号:
    2201221
  • 财政年份:
    2022
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
Curves, Surfaces, and 3-Manifolds: Geometry, Topology, and Dynamics in the Mapping Class Group and Beyond
曲线、曲面和 3 流形:映射类组及其他领域中的几何、拓扑和动力学
  • 批准号:
    2231286
  • 财政年份:
    2022
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
Curves, Surfaces, and 3-Manifolds: Geometry, Topology, and Dynamics in the Mapping Class Group and Beyond
曲线、曲面和 3 流形:映射类组及其他领域中的几何、拓扑和动力学
  • 批准号:
    2203912
  • 财政年份:
    2022
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
Geometry of Curves and Surfaces
曲线和曲面的几何
  • 批准号:
    2202337
  • 财政年份:
    2022
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
Digital terrain model-based analysis focusing on roundness of feature curves and surfaces
基于数字地形模型的特征曲线曲面圆度分析
  • 批准号:
    21K01021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Bio-inspired splashless urinal: from isogonal curves/surfaces to optimal ergonomic designs
仿生防溅小便器:从等角曲线/曲面到最佳人体工程学设计
  • 批准号:
    562686-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.8万
  • 项目类别:
    University Undergraduate Student Research Awards
Moduli spaces of stable and unstable maps to curves and surfaces
稳定和不稳定的模空间映射到曲线和曲面
  • 批准号:
    2426278
  • 财政年份:
    2020
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Studentship
Theory of framed curves, framed surfaces and its applications
框架曲线、框架曲面理论及其应用
  • 批准号:
    20K03573
  • 财政年份:
    2020
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了