Symplectic Surfaces, Lefschetz Fibrations, and Arboreal Skeleta
辛曲面、莱夫谢茨纤维和树栖骨骼
基本信息
- 批准号:1904074
- 负责人:
- 金额:$ 20.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports research in a rapidly growing field of mathematics known as symplectic topology that grew out of studying Hamilton's equations of motion in physics. Position and momentum coordinates are recorded in a higher dimensional space and the equations connecting position and momentum are kept track of in a geometric structure on the space. Powerful techniques were developed in the 1980s and 1990s to study these symplectic geometric spaces, but many fundamental questions remain unsolved. For example, we do not yet understand all of the surfaces that can be found inside these spaces. This project will explore such fundamental questions and develop new techniques for understanding symplectic spaces and for extracting their properties. The PI will share these new techniques with diverse groups of young mathematicians to bring the entering generation of students into cutting edge research. Activities included in this project will provide training in effective communication for students, to promote global collaborations, to engage the public in mathematics, and to ensure our scientific progress can effectively build off of work done by our predecessors and peers.There are three main scientific goals of this project. The first is to make progress on the longstanding symplectic isotopy problem, studying symplectic surfaces in the complex projective plane. The new approach proposed is to reduce to singular surfaces, which allow one to obtain large degrees without large genus and thus avoid the technical roadblock that stalled progress in the early 2000s. The second goal is to utilize Lefschetz fibrations to study questions arising in algebraic geometry and singularity theory from the symplectic topological perspective. Lefschetz fibrations have been an effective tool to construct and calculate invariants of symplectic manifolds, and the PI plans to apply this effective tool to open conjectures and new lines of research related to complex algebraic geometry. The third goal is to develop the emerging technique of arboreal skeleta to study Weinstein manifolds through topological methods utilizing a simple collection of singularity types. The PI has begun initial stages of this program in a recently published paper and will continue development of the theory and applications particularly in low dimensions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个奖项支持研究在一个迅速发展的数学领域称为辛拓扑,成长出研究汉密尔顿的运动方程在物理学。位置和动量坐标被记录在更高维的空间中,连接位置和动量的方程在空间上的几何结构中被跟踪。在20世纪80年代和90年代发展了强大的技术来研究这些辛几何空间,但许多基本问题仍然没有解决。例如,我们还不了解在这些空间中可以找到的所有表面。这个项目将探索这些基本问题,并开发新的技术来理解辛空间和提取其属性。PI将与不同的年轻数学家群体分享这些新技术,以使新一代的学生进入前沿研究。该项目的活动将为学生提供有效沟通的培训,促进全球合作,让公众参与数学,并确保我们的科学进步能够有效地建立在前人和同行的工作基础上。该项目有三个主要科学目标。首先是在辛合痕问题上取得进展,研究复射影平面上的辛曲面。提出的新方法是减少到奇异表面,这使得人们可以在没有大亏格的情况下获得大的度数,从而避免了在21世纪初停滞不前的技术障碍。第二个目标是利用莱夫谢茨纤维化研究问题所产生的代数几何和奇点理论从辛拓扑的角度来看。Lefschetz纤维化一直是构造和计算辛流形不变量的有效工具,PI计划将这种有效工具应用于与复代数几何相关的开放式结构和新的研究领域。第三个目标是发展新兴的技术arboreal cheeta研究Weinstein流形通过拓扑方法利用一个简单的收集奇点类型。PI在最近发表的一篇论文中已经开始了该计划的初始阶段,并将继续发展该理论和应用,特别是在低维领域。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unexpected Stein fillings, rational surface singularities and plane curve arrangements
意外的斯坦因填充、有理表面奇点和平面曲线排列
- DOI:10.2140/gt.2023.27.1083
- 发表时间:2023
- 期刊:
- 影响因子:2
- 作者:Plamenevskaya, Olga;Starkston, Laura
- 通讯作者:Starkston, Laura
The symplectic isotopy problem for rational cuspidal curves
有理尖曲线的辛同位素问题
- DOI:10.1112/s0010437x2200762x
- 发表时间:2022
- 期刊:
- 影响因子:1.8
- 作者:Golla, Marco;Starkston, Laura
- 通讯作者:Starkston, Laura
Symplectic 4‐manifolds admit Weinstein trisections
辛 4-流形允许韦恩斯坦三等分
- DOI:10.1112/topo.12192
- 发表时间:2021
- 期刊:
- 影响因子:1.1
- 作者:Lambert‐Cole, Peter;Meier, Jeffrey;Starkston, Laura
- 通讯作者:Starkston, Laura
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laura Starkston其他文献
Arboreal singularities in Weinstein skeleta
韦恩斯坦骨骼中的树栖奇点
- DOI:
10.1007/s00029-018-0441-z - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Laura Starkston - 通讯作者:
Laura Starkston
J un 2 01 6 TOPOLOGICAL REALIZATIONS OF LINE ARRANGEMENTS
Jun 2 01 6 线路排列的拓扑实现
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Daniel Ruberman;Laura Starkston - 通讯作者:
Laura Starkston
Surgery along star-shaped plumbings and exotic smooth structures on 4–manifolds
沿着星形管道和 4 歧管上奇异的光滑结构进行手术
- DOI:
10.2140/agt.2016.16.1585 - 发表时间:
2014 - 期刊:
- 影响因子:0.7
- 作者:
C. Karakurt;Laura Starkston - 通讯作者:
Laura Starkston
THE FUNDAMENTAL GROUP OF THE COMPLEMENT OF BRAIDED SURFACES
编织面互补的基本群
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Laura Starkston - 通讯作者:
Laura Starkston
Genus-two mutant knots with the same dimension in knot Floer and Khovanov homologies
属-在结 Floer 和 Khovanov 同源性中具有相同尺寸的两个突变结
- DOI:
10.2140/agt.2015.15.43 - 发表时间:
2012 - 期刊:
- 影响因子:0.7
- 作者:
Allison H. Moore;Laura Starkston - 通讯作者:
Laura Starkston
Laura Starkston的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laura Starkston', 18)}}的其他基金
Conference: Trisections Workshop: Connections with Symplectic Topology
会议:三等分研讨会:与辛拓扑的联系
- 批准号:
2308782 - 财政年份:2023
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
CAREER: Symplectic 4-Manifolds and Singular Symplectic Surfaces
职业:辛 4 流形和奇异辛曲面
- 批准号:
2042345 - 财政年份:2021
- 资助金额:
$ 20.39万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: Sloshing liquid decontamination of compliant surfaces
合作研究:顺应表面的晃动液体净化
- 批准号:
2346686 - 财政年份:2024
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
Collaborative Research: Sloshing liquid decontamination of compliant surfaces
合作研究:顺应表面的晃动液体净化
- 批准号:
2346687 - 财政年份:2024
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Trisections Workshops: Connections with Knotted Surfaces and Diffeomorphisms
协作研究:会议:三等分研讨会:与结曲面和微分同胚的联系
- 批准号:
2350344 - 财政年份:2024
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
Understanding Material Interactions and Effects on Polymicrobial Communities at Surfaces
了解材料相互作用和对表面多种微生物群落的影响
- 批准号:
BB/Y512412/1 - 财政年份:2024
- 资助金额:
$ 20.39万 - 项目类别:
Training Grant
Laser Engineered Surfaces/Interfaces for Advanced Batteries
用于先进电池的激光工程表面/界面
- 批准号:
EP/Y036727/1 - 财政年份:2024
- 资助金额:
$ 20.39万 - 项目类别:
Research Grant
Atomic-Scale Engineering of Bioactive Organic Molecules on Surfaces
表面生物活性有机分子的原子尺度工程
- 批准号:
DP240100464 - 财政年份:2024
- 资助金额:
$ 20.39万 - 项目类别:
Discovery Projects
Symmetric representation and the categorification of cluster structure on non-orientable surfaces
不可定向表面簇结构的对称表示和分类
- 批准号:
24K06666 - 财政年份:2024
- 资助金额:
$ 20.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Brauer groups and Neron Severi groups of surfaces over finite fields
有限域上的表面布劳尔群和 Neron Severi 群
- 批准号:
23K25768 - 财政年份:2024
- 资助金额:
$ 20.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Reconfigurable Intelligent Surfaces 2.0 for 6G: Beyond Diagonal Phase Shift Matrices
适用于 6G 的可重构智能表面 2.0:超越对角相移矩阵
- 批准号:
EP/Y004086/1 - 财政年份:2024
- 资助金额:
$ 20.39万 - 项目类别:
Research Grant