CAREER: Symplectic 4-Manifolds and Singular Symplectic Surfaces
职业:辛 4 流形和奇异辛曲面
基本信息
- 批准号:2042345
- 负责人:
- 金额:$ 60.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project studies new frontiers in the geometry of 4-dimensional spaces. These spaces play important roles in the mathematical areas of topology and geometry, as well as in models of important physical systems. Because humans cannot visualize four spatial dimensions, it is necessary to develop mathematical and diagrammatic tools to study these spaces. Historically, 4-dimensional spaces have displayed unusual phenomena, distinct from spaces of either lower or higher dimensions. A persistent theme in the discovery of such phenomena is the role of symplectic geometry. Although symplectic geometry was initially formulated to encode the equations of Hamiltonian physics, it has grown into an important abstract mathematical topic that is particularly powerful for studying 4-dimensional spaces. This project aims to use cutting-edge tools to make novel advances in 4-dimensional symplectic geometry. Because this is a rapidly growing field, training a well-prepared and diverse next generation is particularly important. To that end, the PI will create a new undergraduate course, run speaking workshops for graduate students, develop a paired graduate-undergraduate reading program, and organize workshops, summer schools, and conferences.The project will study symplectic 4-manifolds and singular symplectic surfaces. The first primary goal is to create diagrammatic methods to study the subtleties of diffeomorphism classes of symplectic 4-manifolds. The second goal is to produce new symplectic isotopy classifications for smooth and singular symplectic surfaces. The third goal is to perform new calculations of existing symplectic invariants and to define new invariants for symplectic 4-manifolds and their submanifolds. The project will employ four mathematical methods to study symplectic 4-manifolds and surfaces: branched coverings of braided surfaces, trisections, (de)singularization, and Weinstein handlebodies. The fourth goal is to create a pipeline of new mathematicians well trained in the study of manifolds and skilled in scientific communication and research. The project includes training of students at the graduate and undergraduate levels in geometry, topology, and 4-dimensional spaces, as well as in clear communication and mentoring skills.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目研究四维空间几何学的新领域。这些空间在拓扑学和几何学的数学领域以及重要物理系统的模型中起着重要的作用。由于人类无法想象四维空间,因此有必要开发数学和图解工具来研究这些空间。 从历史上看,四维空间显示出不寻常的现象,与较低或较高维度的空间不同。在发现这种现象的一个持久的主题是辛几何的作用。虽然辛几何最初是为了编码哈密顿物理学的方程而制定的,但它已经发展成为一个重要的抽象数学主题,对于研究四维空间特别强大。该项目旨在使用尖端工具在四维辛几何中取得新的进展。由于这是一个快速增长的领域,培养准备充分和多样化的下一代尤为重要。为此,PI将开设一门新的本科生课程,为研究生开设演讲研讨会,开发一个研究生-本科生配对阅读项目,并组织研讨会、暑期学校和会议。该项目将研究辛4-流形和奇异辛曲面。第一个主要目标是创建图解方法来研究辛4-流形的同构类的微妙之处。第二个目标是产生新的辛合痕分类光滑和奇异辛曲面。第三个目标是对现有的辛不变量进行新的计算,并为辛4-流形及其子流形定义新的不变量。该项目将采用四种数学方法来研究辛4-流形和曲面:编织曲面的分支覆盖,三等分,(去)奇异化和Weinstein双曲体。第四个目标是创建一批在流形研究方面训练有素、在科学交流和研究方面熟练的新数学家。该项目包括对研究生和本科生进行几何、拓扑和四维空间方面的培训,以及清晰的沟通和指导技能。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unexpected Stein fillings, rational surface singularities and plane curve arrangements
意外的斯坦因填充、有理表面奇点和平面曲线排列
- DOI:10.2140/gt.2023.27.1083
- 发表时间:2023
- 期刊:
- 影响因子:2
- 作者:Plamenevskaya, Olga;Starkston, Laura
- 通讯作者:Starkston, Laura
The symplectic isotopy problem for rational cuspidal curves
有理尖曲线的辛同位素问题
- DOI:10.1112/s0010437x2200762x
- 发表时间:2022
- 期刊:
- 影响因子:1.8
- 作者:Golla, Marco;Starkston, Laura
- 通讯作者:Starkston, Laura
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laura Starkston其他文献
Arboreal singularities in Weinstein skeleta
韦恩斯坦骨骼中的树栖奇点
- DOI:
10.1007/s00029-018-0441-z - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Laura Starkston - 通讯作者:
Laura Starkston
J un 2 01 6 TOPOLOGICAL REALIZATIONS OF LINE ARRANGEMENTS
Jun 2 01 6 线路排列的拓扑实现
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Daniel Ruberman;Laura Starkston - 通讯作者:
Laura Starkston
Surgery along star-shaped plumbings and exotic smooth structures on 4–manifolds
沿着星形管道和 4 歧管上奇异的光滑结构进行手术
- DOI:
10.2140/agt.2016.16.1585 - 发表时间:
2014 - 期刊:
- 影响因子:0.7
- 作者:
C. Karakurt;Laura Starkston - 通讯作者:
Laura Starkston
THE FUNDAMENTAL GROUP OF THE COMPLEMENT OF BRAIDED SURFACES
编织面互补的基本群
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Laura Starkston - 通讯作者:
Laura Starkston
Genus-two mutant knots with the same dimension in knot Floer and Khovanov homologies
属-在结 Floer 和 Khovanov 同源性中具有相同尺寸的两个突变结
- DOI:
10.2140/agt.2015.15.43 - 发表时间:
2012 - 期刊:
- 影响因子:0.7
- 作者:
Allison H. Moore;Laura Starkston - 通讯作者:
Laura Starkston
Laura Starkston的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laura Starkston', 18)}}的其他基金
Conference: Trisections Workshop: Connections with Symplectic Topology
会议:三等分研讨会:与辛拓扑的联系
- 批准号:
2308782 - 财政年份:2023
- 资助金额:
$ 60.09万 - 项目类别:
Standard Grant
Symplectic Surfaces, Lefschetz Fibrations, and Arboreal Skeleta
辛曲面、莱夫谢茨纤维和树栖骨骼
- 批准号:
1904074 - 财政年份:2019
- 资助金额:
$ 60.09万 - 项目类别:
Continuing Grant
相似海外基金
Symplectic cohomology and quantum cohomology of Fano manifolds
Fano流形的辛上同调和量子上同调
- 批准号:
2306204 - 财政年份:2023
- 资助金额:
$ 60.09万 - 项目类别:
Standard Grant
Symplectic groupoids and quantization of Poisson manifolds
辛群群和泊松流形的量化
- 批准号:
2303586 - 财政年份:2023
- 资助金额:
$ 60.09万 - 项目类别:
Standard Grant
Fukaya categories of complex symplectic manifolds
复辛流形的深谷范畴
- 批准号:
2305257 - 财政年份:2023
- 资助金额:
$ 60.09万 - 项目类别:
Standard Grant
Probing Near-Symplectic 4-Manifolds and Contact 3-Manifolds with Seiberg-Witten Theory
用 Seiberg-Witten 理论探测近辛 4 流形和接触 3 流形
- 批准号:
2147753 - 财政年份:2021
- 资助金额:
$ 60.09万 - 项目类别:
Standard Grant
Gauge Theory and Invariants of Symplectic Manifolds
规范理论和辛流形不变量
- 批准号:
2104919 - 财政年份:2021
- 资助金额:
$ 60.09万 - 项目类别:
Continuing Grant
Probing Near-Symplectic 4-Manifolds and Contact 3-Manifolds with Seiberg-Witten Theory
用 Seiberg-Witten 理论探测近辛 4 流形和接触 3 流形
- 批准号:
2105445 - 财政年份:2021
- 资助金额:
$ 60.09万 - 项目类别:
Standard Grant
Quantum Steenrod operations in non-monotone symplectic manifolds.
非单调辛流形中的量子斯汀罗德运算。
- 批准号:
2434378 - 财政年份:2020
- 资助金额:
$ 60.09万 - 项目类别:
Studentship
Symplectic Topology of Weinstein Manifolds and Related Topics
温斯坦流形的辛拓扑及相关主题
- 批准号:
1807270 - 财政年份:2018
- 资助金额:
$ 60.09万 - 项目类别:
Continuing Grant
Study of low-dimensional symplectic manifolds in combinatorial ways
低维辛流形的组合研究
- 批准号:
17K14194 - 财政年份:2017
- 资助金额:
$ 60.09万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Dehn Surgery, Four-Manifolds, and Symplectic Topology
Dehn 手术、四流形和辛拓扑
- 批准号:
1709702 - 财政年份:2017
- 资助金额:
$ 60.09万 - 项目类别:
Standard Grant