Spin scattering of topologically protected electrons at defects

缺陷处拓扑保护电子的自旋散射

基本信息

项目摘要

The field of Topological Insulators (TI) is growing in two directions: discovery of new materials with new topological concepts, e.g. Weyl semimetals, or applications in already known and investigated materials. The present proposal comprises topics in the latter direction with emphasis in transport phenomena and spin-charge conversion: Edelstein (magnetoelectric) effect, spin-orbit torque, spin pumping, anomalous Hall effect, and potentiometry on TI. Transport phenomena are always related to dissipation and phase decoherence effects. A ubiquitous source of dissipation during charge or spin transport is scattering off impurity atoms and other defects. Our gained experience on impurity scattering from the first funding period will be applied here.Our findings on the focussing effect in Bi2Te3, on the possibility of back-scattering via the Fermi Surface nesting, or on the shaping of the scattering properties by changing the Fermi surface via doping, all these are examples of the richness and potential for applications and for tailoring transport properties on TI. By means of Boltzmann-type equations, where the ab-initio-calculated scattering amplitude and band-structure enter, we will systematically investigate prospective applications and give guidelines to experiment. Experience gained in the community shows that the most popular three-dimensional TI, Bi2Te3 and Bi2Se3, are well described by density-functional theory, and therefore we have confidence in our approach. At the same time we will continue to bring the core of our method, i.e. the scatering amplitude, to test versus the experiment by comparing quasiparticle interference patterns and potentiometry calculations with the results of our experimental colleagues (P. Sessi/M. Bode, Y. Ando, C. Bobisch, B. Voigtländer).
拓扑绝缘体(TI)领域正在朝着两个方向发展:发现具有新拓扑概念的新材料,例如外尔半金属,或在已知和研究的材料中的应用。本提案包括后一个方向的主题,重点是输运现象和自旋-电荷转换:埃德尔斯坦(磁电)效应,自旋-轨道扭矩,自旋泵,异常霍尔效应,和电位TI。输运现象总是与耗散和相位退相干效应有关。电荷或自旋输运过程中普遍存在的耗散源是杂质原子和其他缺陷的散射。我们从第一个资助期获得的杂质散射经验将在这里应用。我们在Bi 2 Te 3中的聚焦效应,通过费米表面嵌套的背散射的可能性,或通过掺杂改变费米表面来塑造散射特性的发现,所有这些都是应用和定制TI输运特性的丰富性和潜力的例子。通过玻尔兹曼型方程,从头计算的散射振幅和能带结构进入,我们将系统地研究潜在的应用,并给出实验指导。在社区中获得的经验表明,最流行的三维TI,Bi 2 Te 3和Bi 2Se 3,很好地描述了密度泛函理论,因此我们有信心在我们的方法。与此同时,我们将继续把我们的方法的核心,即散射振幅,通过比较准粒子干涉图案和电位计算与我们的实验同事的结果(P. Sessi/M. Bode,Y.安多角,澳-地博比施,B。Voigtländer)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Privatdozent Dr. Phivos Mavropoulos其他文献

Privatdozent Dr. Phivos Mavropoulos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Privatdozent Dr. Phivos Mavropoulos', 18)}}的其他基金

Computational design of spin-caloric nanosructures
自旋热量纳米结构的计算设计
  • 批准号:
    198010637
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
微波有源Scattering dark state粒子的理论及应用研究
  • 批准号:
    61701437
  • 批准年份:
    2017
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

In-situ X-ray Scattering Studies of Oxide Epitaxial Growth Kinetics and Dynamics
氧化物外延生长动力学和动力学的原位 X 射线散射研究
  • 批准号:
    2336506
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Unveiling magnetic structure of long-range ordered quasicrystals and approximant crystals via X-ray Resonant Magnetic Scattering method
通过X射线共振磁散射法揭示长程有序准晶和近似晶体的磁结构
  • 批准号:
    24K17016
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Spectroscopic Detection of Magnetic Scattering and Quasiparticles at Atomic Resolution in the Electron Microscope
电子显微镜中原子分辨率的磁散射和准粒子的光谱检测
  • 批准号:
    EP/Z531194/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Neural Computational Imaging - A Path Towards Seeing Through Scattering
职业:神经计算成像——透视散射的途径
  • 批准号:
    2339616
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Advanced Raman Spectroscopy for Exhaled Breath Analysis for Lung Cancer Detection
用于肺癌检测的呼出气体分析的先进拉曼光谱
  • 批准号:
    494958
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
  • 批准号:
    23H01276
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Study on the correlation bewteen the hierarchical structure of foods and texture by synchrotron X-ray scattering method
同步辐射X射线散射法研究食品层次结构与质地的相关性
  • 批准号:
    23K05124
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Unravelling the Strong Interaction with High-Energy Nuclear Scattering
职业生涯:揭示高能核散射的强相互作用
  • 批准号:
    2239274
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Elucidation of surface proton hopping conduction mechanism using neutron quasi-elastic scattering measurements
使用中子准弹性散射测量阐明表面质子跳跃传导机制
  • 批准号:
    23K17937
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Inducing Off-pathway Assembly of HIV Gag Polyprotein with Computationally Designed Peptides
用计算设计的肽诱导 HIV Gag 多蛋白的非途径组装
  • 批准号:
    10724495
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了