Excitonic Transport in Van der Waals Solids: Insights from Experiment and Predictive Calculations

范德华固体中的激子输运:实验和预测计算的见解

基本信息

项目摘要

Nontechnical description: When a semiconductor absorbs a photon, an electron is excited to a higher energy state. The negatively charged excited electron and the positive charge left behind (hole) attract each other and form a bound pair known as an exciton. These excited pairs are capable of transporting energy in materials and play an important role in natural processes such as photosynthesis as well as organic devices such as photovoltaics and light-emitting diodes. Understanding the transport of excitons adds a new dimensionality to not only bolster the performance of the current excitonic devices but also introduce a platform for next-generation optoexcitonic devices. The current work studies the energy transport and its relation to the separation between the bound electron and hole pair that form the exciton. Above and beyond addressing fundamental and technological challenges, this research at the frontiers of optoelectronic and quantum materials provides an ideal venue for truly interdisciplinary education at all levels. In addition to PhD training, the results of the research findings are being incorporated into the curriculum of graduate and undergraduate courses as well as used for training of undergraduate students. The knowledge gained from this research has a potential to push forward the frontiers of research, innovations and educating the next generation of scientists and engineers for a better future. Technical description: Exciton transport in two-dimensional semiconductors has recently received significant attention due to the prospects of achieving room-temperature-stable excitonic devices. These van der Waals (vdW) semiconductors support stable room temperature excitons due to reduced dielectric screening that results in high binding energies and small Bohr radii. However, since these excitons remain delocalized over a few lattice spacings, qualitative as well as quantitative understanding of the transport behavior has been difficult. This is reflected from the fact that classifying the excitons as Wannier-Mott or Frenkel excitons is not trivial in these materials. Understanding the transport is crucial for the development of the material system as a device platform as it determines the architecture of the devices. To meet this challenge, the research team undertake a joint experimental and computational research effort using diffusion imaging microscope, ultrafast pump-probe and nonlinear optical techniques, photoluminescence spectroscopy and first-principles calculations based on density functional theory to conduct a systematic study of excitonic energy transport properties that can provide insight on the excitonic states. The team investigates excitonic energy transport in varying Lead Iodide layers that are sandwiched between hexagonal Boron Nitride. This material system enables two independent knobs (i) thickness of Lead Iodide (ii) thickness of Boron Nitride, to control the dielectric screening of the excitons and hence the amount of delocalization. Such atomic level control over the excitonic states as well as dielectric screening provides an opportunity to study the relationship between localized and delocalized excitonic energy transport in the same material system. In doing so, it could potentially enable control over band-like or hopping-like energy-transport mechanisms. Control over transport behavior is potentially transformative as it will change the rules on how charge and/or excited states are exploited for various devices such as photovoltaics, light generation, transistors, etc. Through this work, the research team attempts to gain control over the energy flow between and within nanoscale system that will enhance progress in quantum-information science, energy harvesting, metrology, and light sources.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:当半导体吸收光子时,电子被激发到更高的能态。带负电荷的激发电子和留下的正电荷(空穴)相互吸引,形成一对被称为激子的束缚对。这些激发对能够在材料中传输能量,并在光合作用等自然过程以及光伏和发光二极管等有机设备中发挥重要作用。对激子输运的了解不仅为当前激子器件的性能提供了一个新的维度,而且为下一代光激子器件提供了一个平台。目前的工作研究了能量传输及其与形成激子的束缚电子和空穴对之间的分离的关系。除了解决根本和技术挑战之外,这项光电子和量子材料前沿的研究为各级真正的跨学科教育提供了一个理想的场所。除了博士培训外,研究成果还被纳入研究生和本科课程的课程,并用于本科生的培训。从这项研究中获得的知识有可能推动研究、创新和教育下一代科学家和工程师的前沿,创造更美好的未来。技术描述:由于实现室温稳定的激子器件的前景,二维半导体中的激子输运最近受到了极大的关注。这些范德华(VDW)半导体支持稳定的室温激子,因为减少了介质屏蔽,从而导致高结合能和小玻尔半径。然而,由于这些激子在几个晶格间隔内仍然是离域的,所以定性和定量地理解输运行为一直是困难的。这反映在这样一个事实上,在这些材料中,将激子归类为Wannier-Mott或Frenkel激子并不是微不足道的。了解传输对于将材料系统作为设备平台开发至关重要,因为它决定了设备的架构。为了迎接这一挑战,研究小组利用扩散成像显微镜、超快泵浦探测和非线性光学技术、光致发光光谱和基于密度泛函理论的第一性原理计算,开展了一项联合的实验和计算研究工作,以系统地研究激子的能量输运性质,从而深入了解激子的状态。该团队研究了夹在六方氮化硼之间的不同碘化铅层中的激子能量传输。该材料系统允许两个独立的旋钮(I)碘化铅厚度(Ii)氮化硼厚度控制激子的介电屏蔽,从而控制离域的量。这种对激子态的原子能级控制以及介电屏蔽为研究同一材料系统中局域和非局域激子能量输运之间的关系提供了机会。在这样做的时候,它可能会潜在地控制带状或跳跃状的能量传输机制。对传输行为的控制具有潜在的变革性,因为它将改变各种设备如何利用电荷和/或激发态的规则,如光伏、发光、晶体管等。通过这项工作,研究团队试图获得对纳米系统之间和内部的能量流动的控制,这将促进量子信息科学、能量采集、计量和光源的进步。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strain-induced formation of self-assembled InGaN/GaN superlattices in nominal InGaN films grown by plasma-assisted molecular beam epitaxy
  • DOI:
    10.1103/physrevmaterials.5.124606
  • 发表时间:
    2021-12-28
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Khan, Kamruzzaman;Sun, Kai;Ahmadi, Elaheh
  • 通讯作者:
    Ahmadi, Elaheh
Spin–orbit effects on the electronic and optical properties of lead iodide
  • DOI:
    10.1063/5.0146397
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Woncheol Lee;Zhengyang Lyu;Zidong Li;P. Deotare;E. Kioupakis
  • 通讯作者:
    Woncheol Lee;Zhengyang Lyu;Zidong Li;P. Deotare;E. Kioupakis
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Parag Deotare其他文献

単一質量分析に向けた光機械スロットビーム振動子
用于单质谱分析的光机械狭缝光束振荡器
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    北 翔太;Daniel Ramos;Ian Frank;Parag Deotare;Mike Burek;Cheng Wang;Marko Loncar
  • 通讯作者:
    Marko Loncar

Parag Deotare的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
Intraflagellar Transport运输纤毛蛋白的分子机理
  • 批准号:
    31371354
  • 批准年份:
    2013
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
苜蓿根瘤菌(S.meliloti)四碳二羧酸转运系统 (Dicarboxylate transport system, Dct系统)跨膜信号转导机理
  • 批准号:
    30870030
  • 批准年份:
    2008
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Establishment of spatio-temporal heat transport control by van der Waals materials
范德华材料时空热传输控制的建立
  • 批准号:
    23H01445
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ExpandQISE: Track 1: Ferroelectric Ordering and Polarization-Coupled Transport Properties in 2D Van der Waals Materials
ExpandQISE:轨道 1:2D 范德华材料中的铁电有序和极化耦合输运特性
  • 批准号:
    2329159
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Transport on van der Wals Superconductor Heretostructures
范德瓦尔斯超导异质结构上的输运
  • 批准号:
    2105048
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Collaborative Research: Combined transport and scanning probe study of twisted van der Waals devices
合作研究:扭曲范德华装置的传输和扫描探针联合研究
  • 批准号:
    2122462
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: Combined transport and scanning probe study of twisted van der Waals devices
合作研究:扭曲范德华装置的传输和扫描探针联合研究
  • 批准号:
    2122476
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Quantum transport of electrons in emerging van der Waals devices
新兴范德华装置中电子的量子传输
  • 批准号:
    2613914
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Studentship
Active thermal transport control by carrier tuning in van der Waals materials
通过范德华材料中的载流子调节进行主动热传输控制
  • 批准号:
    20KK0087
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Quantum Transport Phenomena in Twist-Controlled van der Waals Tunnel Junctions
扭转控制范德华隧道结中的量子输运现象
  • 批准号:
    19H01820
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Approaching the 1D transport limit in van der Waals nanoribbons
职业生涯:接近范德华纳米带的一维输运极限
  • 批准号:
    1752997
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
NSF BSF: Transport, Fluctuation, and Nonequilibrium Phase Transition in Atomically Thin Crystalline Van der Waals Superconductors
NSF BSF:原子薄晶体范德华超导体中的输运、涨落和非平衡相变
  • 批准号:
    1809188
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了