Electronic Resonant Stimulated Raman Scattering Microscopy for Ultrasensitive Vibrational Imaging

用于超灵敏振动成像的电子共振受激拉曼散射显微镜

基本信息

  • 批准号:
    1904684
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

With support from the Chemical Measurement and Imaging Program in the Division of Chemistry, Professor Wei Min of Columbia University is developing new measurement methods that have the potential to provide chemical information on individual molecules, the ultimate capability in measurement science. Raman spectroscopy and microscopy are popular tools for measuring chemical properties of molecules, as these tools enable research discoveries and chemical assessments, which are of value to industry, health care, materials and biological research, and environmental monitoring. However, conventional Raman methods are restricted, in that many molecules are required to generate a Raman signal sufficiently different from the background, which is referred to as the detection limit. Professor Min is improving the detection limit of Raman microscopy through an unprecedented approach, such that individual molecules can be chemically characterized on a routine basis, while present in a variety of chemical and biological environments. Professor Min and his team use this new form of Raman microscopy to simultaneously obtain images of many species found inside biological cells, as well as study the behavior of individual enzymes, thereby facilitating our understanding of the complex biological world. The Min group is leveraging their expertise in spectroscopy and microscopy to develop demonstrations and educational laboratory experiments that engage underrepresented minority students in local high schools and community colleges, with the goal being enhancement of student physical science skills and interest in future careers in science and engineering. The impact of these new instruments and labs is amplified by online dissemination through high-impact, internet-based instructional videos.Raman spectroscopy provides exquisite chemical information about molecular structure and dynamics resulting from interactions with the environment. Unfortunately, Raman signals are intrinsically weak in the optical far field. Although established near-field methods of surface-enhanced Raman spectroscopy can offer superb limits of detection, the strict reliance of near-field approaches on close interaction of target molecules with metallic nanostructures limits their application to a select group of chemical and biological systems. The project addresses the urgent need for ultra-low-limit-of-detection Raman microscopy, without relying on nanostructures. Professor Min and his team combine resonance Raman spectroscopy with stimulated Raman scattering microscopy to achieve ultra-low-limit-of-detection vibrational imaging. This enabling technology results from enhancement of the Raman scattering cross section by several orders of magnitude, due to the joint action of electronic resonant amplification and stimulated Raman amplification, making possible single-molecule limits of detection. Professor Min and his team employ the new ultra-low-limit-of-detection Raman microscopy method in multi-wavelength imaging of the interior of biological cells, as well as in mechanistic studies of single-molecule, enzyme-catalyzed biochemical reactions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学测量与成像项目的支持下,哥伦比亚大学的魏民教授正在开发新的测量方法,这些方法有可能提供单个分子的化学信息,这是测量科学的终极能力。拉曼光谱和显微镜是测量分子化学性质的常用工具,因为这些工具可以进行研究发现和化学评估,这对工业,医疗保健,材料和生物研究以及环境监测具有价值。然而,传统的拉曼方法受到限制,因为需要许多分子产生与背景足够不同的拉曼信号,这被称为检测极限。闵教授正在通过一种前所未有的方法提高拉曼显微镜的检测极限,使单个分子可以在常规基础上进行化学表征,同时存在于各种化学和生物环境中。闵教授和他的团队使用这种新形式的拉曼显微镜同时获得生物细胞内许多物种的图像,并研究单个酶的行为,从而促进我们对复杂生物世界的理解。闵小组利用他们在光谱学和显微镜方面的专业知识,开发示范和教育实验室实验,吸引当地高中和社区大学中代表性不足的少数民族学生,其目标是提高学生的物理科学技能和对未来科学和工程职业的兴趣。这些新仪器和实验室的影响通过高影响力、基于互联网的教学视频的在线传播而被放大。拉曼光谱提供了与环境相互作用产生的分子结构和动力学的精细化学信息。不幸的是,拉曼信号在光学远场中本质上是微弱的。虽然已建立的表面增强拉曼光谱近场方法可以提供极好的检测极限,但近场方法严格依赖于靶分子与金属纳米结构的密切相互作用,限制了它们在化学和生物系统中的应用。该项目解决了对超低检测限拉曼显微镜的迫切需求,而不依赖于纳米结构。闵教授和他的团队将共振拉曼光谱与受激拉曼散射显微镜相结合,实现了超低检测极限的振动成像。由于电子共振放大和受激拉曼放大的共同作用,使拉曼散射截面增强了几个数量级,从而使单分子检测极限成为可能。闵教授和他的团队采用新的超低检测极限拉曼显微镜方法对生物细胞内部进行多波长成像,以及对单分子酶催化的生化反应进行机理研究。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Background-free imaging of chemical bonds by a simple and robust frequency-modulated stimulated Raman scattering microscopy
通过简单而强大的调频受激拉曼散射显微镜对化学键进行无背景成像
  • DOI:
    10.1364/oe.391016
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Xiong, Hanqing;Qian, Naixin;Zhao, Zhilun;Shi, Lingyan;Miao, Yupeng;Min, Wei
  • 通讯作者:
    Min, Wei
Strong Concentration Enhancement of Molecules at the Interface of Aqueous Microdroplets
  • DOI:
    10.1021/acs.jpcb.0c07718
  • 发表时间:
    2020-11-05
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Xiong, Hanqing;Lee, Jae Kyoo;Min, Wei
  • 通讯作者:
    Min, Wei
Strong Electric Field Observed at the Interface of Aqueous Microdroplets
  • DOI:
    10.1021/acs.jpclett.0c02061
  • 发表时间:
    2020-09-03
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Xiong, Hanqing;Lee, Jae Kyoo;Min, Wei
  • 通讯作者:
    Min, Wei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei Min其他文献

Bioorthogonal vibrational imaging of dynamic metabolism in living organisms
生物体动态代谢的生物正交振动成像
  • DOI:
    10.1364/ntm.2015.nt2c.3
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0.4
  • 作者:
    Lu Wei;Wei Min
  • 通讯作者:
    Wei Min
Stimulated Raman scattering microscopy for biomedical imaging
用于生物医学成像的受激拉曼散射显微镜
  • DOI:
    10.1117/12.809802
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    Wei Min;C. Freudiger;Sijia Lu;Chengwei He;Jing X. Kang;X. S. Xie
  • 通讯作者:
    X. S. Xie
cDNA cloning, characterization, and expression analysis of the Rac1 and Rac2 genes from Cynoglossus semilaevis
半滑舌鱼 Rac1 和 Rac2 基因的 cDNA 克隆、表征和表达分析
  • DOI:
    10.1016/j.fsi.2018.11.006
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Xiu Yunji;Zhang Hongxiang;Wang Shuangyan;Gan Tian;Wei Min;Zhou Shun;Chen Songlin
  • 通讯作者:
    Chen Songlin
Comparisons of Acid and Water Solubilities of Rice Straw Ash Together with Its Major Ash-Forming Elements at Different Ashing Temperatures: An Experimental Study
不同灰化温度下稻草灰及其主要成灰元素酸、水溶解度的实验研究
  • DOI:
    10.3390/su11071989
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Zhang Yi;Zhang Guanmin;Wei Min;Gao Zhenqiang;Tian Maocheng;He Fang
  • 通讯作者:
    He Fang
Surface enhanced Raman scattering based on Au nanoparticles/layered double hydroxide ultrathin films
基于金纳米颗粒/层状双氢氧化物超薄膜的表面增强拉曼散射
  • DOI:
    10.1039/c4tc02714k
  • 发表时间:
    2015-05
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Teng Haiyan;Luo Heng;Yan Dongpeng;Wei Min
  • 通讯作者:
    Wei Min

Wei Min的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
  • 批准号:
    2332172
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Resonant Acoustic Mixing facility for sustainable chemical manufacturing
用于可持续化学制造的共振声学混合设施
  • 批准号:
    EP/Z53111X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Research Grant
Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
  • 批准号:
    2332173
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Unveiling magnetic structure of long-range ordered quasicrystals and approximant crystals via X-ray Resonant Magnetic Scattering method
通过X射线共振磁散射法揭示长程有序准晶和近似晶体的磁结构
  • 批准号:
    24K17016
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Resonant tunneling diode Terahertz oscillator with superlattice heterostructure for high output power
具有超晶格异质结构的谐振隧道二极管太赫兹振荡器,可实现高输出功率
  • 批准号:
    24K17329
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Si tunnel transistor with high on-state current assited by resonant state in quantum well
量子阱谐振态辅助的高通态电流硅隧道晶体管
  • 批准号:
    23H01476
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Spectral analysis of micro-resonant PDEs with random coefficients
具有随机系数的微共振偏微分方程的谱分析
  • 批准号:
    EP/X01021X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Fellowship
An innovation motor for electric aircraft and vehicles - double high power-density by a doubly-fed and a magnetic resonant coupling -
用于电动飞机和车辆的创新电机 - 通过双馈和磁共振耦合实现双倍高功率密度 -
  • 批准号:
    23K03803
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SBIR Phase I: Beyond thin-film optics: Resonant grating-based optical component technology
SBIR 第一阶段:超越薄膜光学:基于谐振光栅的光学元件技术
  • 批准号:
    2304394
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Fast Precision Robust Control of Resonant Flexible Systems
谐振柔性系统的快速精确鲁棒控制
  • 批准号:
    DP230102443
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了