Spectral analysis of micro-resonant PDEs with random coefficients
具有随机系数的微共振偏微分方程的谱分析
基本信息
- 批准号:EP/X01021X/1
- 负责人:
- 金额:$ 40.45万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
When waves travel in the three-dimensional space in the absence of obstacles, their behaviour is fairly simple and very well understood. However, if one wants to propagate, say, electromagnetic or sound waves along a curved surface or through an inhomogeneous material, the problem becomes less straightforward and its mathematical description far trickier. The nontrivial geometry of the underlying space is reflected in both the physical properties of the propagating waves and the complexity of their mathematical modelling.In the 1950s, Philip W. Anderson (Nobel Prize in Physics, 1977) realised that one can induce localisation of electrons (that is, electrons, which can be viewed as a particular kind of waves, live in a confined small portion of space, rather than propagate over extended regions) in a material with a lattice structure by adding a certain amount of randomness to the system, a phenomenon now known as Anderson localisation. This can be achieved, for example, by contaminating a semi-conductor with randomly distributed impurities. Despite the extensive mathematical and experimental efforts made since then to grasp the theoretical underpinning of wave localisation, this remains an elusive phenomenon and the mathematical techniques to describe it are few and far between.The proposal deals with the rigorous mathematical description of propagation and localisation of waves in a particular class of composite materials with random microscopic geometry, called micro-resonant (or high-contrast) random media: small inclusions of a "soft" material are randomly dispersed in a "stiff" matrix. The highly contrasting physical properties of the two constituents, combined with a particular scaling of the inclusions, result in microscopic resonances, which manifest macroscopically by allowing propagation of waves in the material only within certain ranges of frequencies (band-gap spectrum) - a property quite useful in the manufacturing of wave manipulating devices.High-contrast media with periodically distributed inclusions have been extensively studied and numerous results are available in the literature. However, their stochastic counterparts, which model more realistic scenarios and may exhibit localisation, are very little understood from a mathematical viewpoint. The proposal will develop a new range of techniques to study Anderson-type localisation and defect modes in the context of composite materials modelled by high-contrast partial differential equations with random coefficients. The proposed new approach, based on the interplay between spectral theory and stochastic homogenisation, is exciting and very promising, in that it links the mathematical techniques with the underlying localisation mechanism due to the micro-resonant effect of inclusions. The project will also develop a comprehensive homogenisation and spectral theory for high-contrast random systems of PDEs (describing, for example, electromagnetic and elastic waves), for which nothing is currently known, and which have the potential of giving rise to new previously unobserved effects.
当波在没有障碍物的三维空间中传播时,它们的行为相当简单,也很容易理解。然而,如果人们想传播,比如说,电磁波或声波沿着一个弯曲的表面或通过一个不均匀的材料,这个问题就变得不那么简单了,它的数学描述也要复杂得多。基础空间的非平凡几何结构反映在传播波的物理性质和数学建模的复杂性上。安德森(1977年诺贝尔物理学奖)意识到,人们可以通过向具有晶格结构的材料中添加一定量的随机性来诱导电子的局域化(也就是说,电子,可以被视为一种特殊类型的波,生活在有限的小部分空间中,而不是在扩展的区域中传播),这种现象现在被称为安德森局域化。例如,这可以通过用随机分布的杂质污染半导体来实现。尽管从那时起,人们在数学和实验上进行了大量的努力来掌握波局部化的理论基础,但这仍然是一个难以捉摸的现象,描述它的数学技术也很少。该提案涉及波在具有随机微观几何形状的特定类别复合材料中的传播和局部化的严格数学描述,称为微共振(或高对比度)随机介质:“软”材料的小夹杂物随机分散在“硬”基质中。这两种成分的物理性质差异很大,再加上夹杂物的特定比例,导致了微观共振,其通过仅允许在特定频率范围内的波在材料中传播而在宏观上显现(带隙谱)-在波操纵装置的制造中非常有用的性质。高-具有周期性分布的内含物的造影剂已经被广泛研究,并且在文献中可以获得许多结果。然而,它们的随机对应物,模拟更现实的场景,并可能表现出局部化,从数学的角度来看,很少被理解。该提案将开发一系列新的技术,以研究安德森型局部化和缺陷模式的背景下,复合材料建模的高对比度偏微分方程与随机系数。所提出的新方法,光谱理论和随机均匀化之间的相互作用的基础上,是令人兴奋的和非常有前途的,因为它链接的数学技术与底层的本地化机制,由于微观共振效应的夹杂物。该项目还将为偏微分方程的高对比度随机系统(例如,描述电磁波和弹性波)开发全面的均匀化和谱理论,目前对此一无所知,并且有可能产生新的以前未观察到的效应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matteo Capoferri其他文献
Global Propagator for the Massless Dirac Operator and Spectral Asymptotics
无质量狄拉克算子和谱渐进的全局传播器
- DOI:
10.1007/s00020-022-02708-1 - 发表时间:
2020 - 期刊:
- 影响因子:0.8
- 作者:
Matteo Capoferri;D. Vassiliev - 通讯作者:
D. Vassiliev
Invariant subspaces of elliptic systems I: pseudodifferential projections
椭圆系统的不变子空间 I:伪微分投影
- DOI:
10.1016/j.jfa.2022.109402 - 发表时间:
2021 - 期刊:
- 影响因子:1.7
- 作者:
Matteo Capoferri;D. Vassiliev - 通讯作者:
D. Vassiliev
Partial Differential Equations and Quantum States in Curved Spacetimes
弯曲时空中的偏微分方程和量子态
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:2.4
- 作者:
Zh. Avetisyan;Matteo Capoferri - 通讯作者:
Matteo Capoferri
Spectral asymptotics for linear elasticity: the case of mixed boundary conditions
线弹性的谱渐近:混合边界条件的情况
- DOI:
10.1017/prm.2024.65 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Matteo Capoferri;Isabel Mann - 通讯作者:
Isabel Mann
Diagonalization of elliptic systems via pseudodifferential projections
通过伪微分投影对椭圆系统进行对角化
- DOI:
10.1016/j.jde.2021.12.032 - 发表时间:
2021 - 期刊:
- 影响因子:4.8
- 作者:
Matteo Capoferri - 通讯作者:
Matteo Capoferri
Matteo Capoferri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
利用全基因组关联分析和QTL-seq发掘花生白绢病抗性分子标记
- 批准号:31971981
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
基于SERS纳米标签和光子晶体的单细胞Western Blot定量分析技术研究
- 批准号:31900571
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
利用多个实验群体解析猪保幼带形成及其自然消褪的遗传机制
- 批准号:31972542
- 批准年份:2019
- 资助金额:57.0 万元
- 项目类别:面上项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
多目标诉求下我国交通节能减排市场导向的政策组合选择研究
- 批准号:71473155
- 批准年份:2014
- 资助金额:60.0 万元
- 项目类别:面上项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于物质流分析的中国石油资源流动过程及碳效应研究
- 批准号:41101116
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 40.45万 - 项目类别:
Molecular Mechanisms of Dystrophin Expression in Ameliorated Phenotypes
改善表型中肌营养不良蛋白表达的分子机制
- 批准号:
10660396 - 财政年份:2023
- 资助金额:
$ 40.45万 - 项目类别:
Role of RNA helicase Ddx5 in pathological cardiac remodeling
RNA解旋酶Ddx5在病理性心脏重塑中的作用
- 批准号:
10718560 - 财政年份:2023
- 资助金额:
$ 40.45万 - 项目类别:
An empirical study of Chinese household debt behaviour: a micro-data analysis focusing on digital finance
中国家庭债务行为实证研究:聚焦数字金融的微观数据分析
- 批准号:
23K01453 - 财政年份:2023
- 资助金额:
$ 40.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Proof-of-Principle of Operando Hydrogen Microscopy using Micro-He Beam Transmission Elastic Recoil Detection Analysis
使用微氦光束传输弹性反冲检测分析进行原位氢显微镜原理验证
- 批准号:
23K17873 - 财政年份:2023
- 资助金额:
$ 40.45万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Translational development of novel CRISPR approach to treat genomic duplications
治疗基因组重复的新型 CRISPR 方法的转化开发
- 批准号:
10698879 - 财政年份:2023
- 资助金额:
$ 40.45万 - 项目类别:
Automated Electrophoresis Platform to Streamline Validations of Biomedical Samples
自动化电泳平台可简化生物医学样品的验证
- 批准号:
10710812 - 财政年份:2023
- 资助金额:
$ 40.45万 - 项目类别:
Antiparasitic Agent Discovery from Natural Products for the Treatment of a Globally Emerging Disease
从天然产物中发现抗寄生虫剂,用于治疗全球新发疾病
- 批准号:
10726421 - 财政年份:2023
- 资助金额:
$ 40.45万 - 项目类别:
Three-dimensional organoid models to study breast cancer progression
研究乳腺癌进展的三维类器官模型
- 批准号:
10581806 - 财政年份:2023
- 资助金额:
$ 40.45万 - 项目类别:
Evaluation of disordered excitation coordination underlying gut hypersensitivity by functional micro-image analysis
通过功能微图像分析评估肠道超敏反应背后的紊乱兴奋协调
- 批准号:
23H02813 - 财政年份:2023
- 资助金额:
$ 40.45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)