Towards Internet of Implantable Things: A Micro-Scale Magnetoelectric Intra-Body Communication Platform

迈向可植入物联网:微型磁电体内通信平台

基本信息

  • 批准号:
    1904811
  • 负责人:
  • 金额:
    $ 42.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Towards Internet of Implantable Things: A Micro-Scale Magnetoelectric Intra-Body Communication Platform Wirelessly connected networks of implantable medical devices with sensing and actuation capability hold the promise of unprecedented real-time healthcare monitoring and therapies that can transform societal health and well-being. In such systems, implants can measure critical physical and physiological parameters, such as mobility, heart rate, neural activity, and chemistry. Based on this data, the system can act to prevent the onset of critical health events or treat diseases in many applications, such as drug delivery, closed-loop neural prostheses, etc. For this vision to be successful, a paradigm shift from conventional standalone highly invasive implants to wirelessly connected networks of miniaturized implants (i.e., Internet of Implantable Things) is of paramount importance. Multiple unresolved challenges exist within current state-of-the-art techniques for intra-body communication that includes radio frequency, inductive, ultrasound, and human body communication. These challenges are: high power consumption, short communication range, low data rate, and large implantable transmitter/receiver transducers. Novel micro-scale implantable methods that enable low-power intra-body communication across long distances (meter) at Mega bits-per-second (Mbps) rates are needed. The proposed research will demonstrate a unique building block for a comprehensive set of wirelessly connected minimally invasive implants that will enable real-time healthcare monitoring and therapies. It will open opportunity for conducting unprecedented neuroscience and electrophysiology experiments that address the most basic questions about the complex nervous system. This program also includes a significant educational and outreach component by taking advantage of the multidisciplinary nature of the research to impact K12 teachers and students, minorities, and undergraduate and graduate students. K-12 teachers and students will be hosted in summers and supported with multidisciplinary classroom research projects, engineering modules, and hands-on opportunities closely coupled to the proposed research. The proposed Internet of Implantable Things are envisioned to be minimally invasive, fully wireless, and highly connected to address existing challenges within current state-of-the-art techniques for intra-body communication, such as high-power consumption, short communication range, low data rate, and bulky transmitters/receivers. The main objective of this program is to enable wideband, long-range, and low power wireless communication among a network of miniaturized biomedical implants through the use of MHz-range magnetic fields coupled with implantable micro-scale magnetoelectric transducers. The overarching target is to simultaneously provide several Mbps data rate and whole-body communication range with pico-joule-per-bit (pJ/bit) level of energy consumption while dramatically reducing the implant's size. Low-frequency magnetic fields are attractive because of their very low absorption in human tissue and safety. Systematic investigations will be conducted to understand the fundamental behavior of implantable micro-scale magnetoelectric transducers operating at tens of MHz and interfaced with custom-designed pulse-based transceiver circuits for energy-efficient and robust intra-body communication. Effects related to implants' crosstalk, alignment, orientation, and tissue interaction uncertainties in ambulatory subjects will be overcome through innovative magnetoelectric transducer and circuit design. Extensive characterization will be conducted to elucidate the influence of material microstructure and anisotropy, transducer operating mode, alignment, orientation, and tissue interactions on the performance. High accuracy computational and circuit models for magnetoelectric transducers at different tissue medium will be developed and experimentally validated, which will serve as a basis for broad range of system design. The program will provide foundational basis for a novel modulation technique, termed Ultrasound Harmonic Modulation, along with a transceiver chip for micro-scale magnetoelectric transducers. This will lead to a first-in-class micro-scale implantable platform for channelized energy-efficient meter-range communication at safe MHz-range frequencies. System-level demonstrations with different magnetoelectric transducers (dimensional range of 0.1-1 millimeter) and frequencies (10-100 MHz) enabling communication up to meter range at Mbps with pJ/bit power consumption will establish the fundamental basis for the Internet of Implantable Things.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
具有传感和驱动能力的植入式医疗设备无线连接网络有望实现前所未有的实时医疗监测和治疗,从而改变社会健康和福祉。在这样的系统中,植入物可以测量关键的物理和生理参数,如移动性、心率、神经活动和化学。基于这些数据,该系统可以在许多应用中预防重大健康事件的发生或治疗疾病,如药物输送、闭环神经假体等。为了实现这一愿景,从传统的独立高侵入性植入物到微型植入物的无线连接网络(即可植入物互联网)的范式转变至关重要。在目前最先进的体内通信技术中存在着许多未解决的挑战,包括射频、感应、超声和人体通信。这些挑战包括:高功耗、短通信范围、低数据速率和大型植入式发送/接收传感器。需要一种新型的微尺度植入式方法,使低功耗的体内通信能够以每秒兆位(Mbps)的速率进行长距离(米)通信。拟议的研究将展示一个独特的构建块,用于一套全面的无线连接微创植入物,将实现实时医疗监测和治疗。它将为开展前所未有的神经科学和电生理学实验提供机会,以解决有关复杂神经系统的最基本问题。该项目还包括一个重要的教育和推广组成部分,利用研究的多学科性质来影响K12教师和学生,少数民族,本科生和研究生。K-12教师和学生将在夏季接待,并支持多学科课堂研究项目,工程模块,以及与拟议研究密切相关的实践机会。拟议的植入式物联网被设想为微创、完全无线和高度连接,以解决当前最先进的体内通信技术中存在的挑战,例如高功耗、短通信范围、低数据速率和笨重的发射器/接收器。该项目的主要目标是通过使用mhz范围的磁场和可植入的微尺度磁电换能器,在小型生物医学植入物网络之间实现宽带、远程和低功耗无线通信。总体目标是在显著减小植入物尺寸的同时,提供几Mbps的数据速率和全身通信范围,能耗为皮焦耳/位(pJ/bit)。低频磁场因其在人体组织中的吸收极低和安全性而具有吸引力。将进行系统的研究,以了解在数十兆赫兹工作的可植入微型磁电换能器的基本行为,并与定制设计的基于脉冲的收发电路接口,以实现节能和稳健的体内通信。通过创新的磁电换能器和电路设计,将克服与植入物串扰、对准、取向和组织相互作用不确定性有关的影响。将进行广泛的表征以阐明材料微观结构和各向异性、换能器工作模式、对准、取向和组织相互作用对性能的影响。本文将开发并实验验证不同组织介质下磁电换能器的高精度计算和电路模型,这将为广泛的系统设计提供基础。该计划将为一种新的调制技术提供基础,称为超声谐波调制,以及用于微尺度磁电换能器的收发芯片。这将导致一个一流的微尺度植入式平台,用于在安全的mhz范围频率下信道化节能的米范围通信。系统级演示使用不同的磁电换能器(尺寸范围为0.1-1毫米)和频率(10-100 MHz),以Mbps的速度在米范围内进行通信,功耗为pJ/bit,这将为植入式物联网奠定基础。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Comprehensive Study on Magnetoelectric Transducers for Wireless Power Transfer Using Low-Frequency Magnetic Fields
利用低频磁场进行无线电力传输的磁电换能器的综合研究
Packaging Methods for Magnetoelectric Transducers Used as Wireless Power Receivers
用作无线电力接收器的磁电换能器的封装方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mehdi Kiani其他文献

Nonlocal flat optics for size-selective image processing and denoising
用于尺寸选择性图像处理和去噪的非局域平面光学
  • DOI:
    10.1038/s41467-025-59765-4
  • 发表时间:
    2025-05-14
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Sandeep Kumar Chamoli;Chunqi Jin;Yandong Fan;Mehdi Kiani;Heedong Goh;Chen Huang;Shuyu Guo;Yuntong Wang;Fei Zhu;Guohua Xing;Bo Li;Tian Bai;Andrea Alù;Wei Li
  • 通讯作者:
    Wei Li
Systematic investigation of self-image-guided ultrasonic transceiver using time interval measurements for wireless power transfer
基于时间间隔测量的自成像引导超声收发器用于无线功率传输的系统研究
  • DOI:
    10.1016/j.bspc.2022.104482
  • 发表时间:
    2023-03-01
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Rezvan Salahi;Mohsen Moezzi;Hassan Ghafoorifard;Mehdi Kiani
  • 通讯作者:
    Mehdi Kiani
Improving Health Monitoring of Construction Workers Using Physiological Data-Driven Techniques: An Ensemble Learning-Based Framework to Address Distributional Shifts
使用生理数据驱动技术改善建筑工人的健康监测:基于集成学习的框架来解决分配变化
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amit Ojha;Yizhi Liu;Houtan Jebelli;Hunayu Cheng;Mehdi Kiani
  • 通讯作者:
    Mehdi Kiani

Mehdi Kiani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mehdi Kiani', 18)}}的其他基金

NCS-FO: Fully Wireless Flexible Electrical-Acoustic Implant for High-Resolution Neural Stimulation and Recording at Large Scale
NCS-FO:全无线柔性电声植入物,用于大规模高分辨率神经刺激和记录
  • 批准号:
    2219811
  • 财政年份:
    2022
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Standard Grant
High-Resolution Transcranial Ultrasound Neuromodulation at Large Scale
大规模高分辨率经颅超声神经调节
  • 批准号:
    2143557
  • 财政年份:
    2022
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Standard Grant
CAREER: All-Acoustic Image-Guided Implantable Microscopic Ultrasound Neuromodulation
职业:全声图像引导植入式显微超声神经调节
  • 批准号:
    1942839
  • 财政年份:
    2020
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Continuing Grant
Planning Grant: Engineering Research Center for Ubiquitous Wireless Power for a Healthy World (POWERHEALTH)
规划资助:健康世界无处不在的无线充电工程研究中心(POWERHEALTH)
  • 批准号:
    1936910
  • 财政年份:
    2019
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Standard Grant

相似国自然基金

Internet大范围拥塞等效时滞动力学模型和在线学习控制
  • 批准号:
    11872277
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
面向Internet的SDN运行机制的研究
  • 批准号:
    61572123
  • 批准年份:
    2015
  • 资助金额:
    67.0 万元
  • 项目类别:
    面上项目
Internet治理与企业信息披露策略研究:理论、实证检验与应用
  • 批准号:
    71572152
  • 批准年份:
    2015
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
面向AS级Internet网络拓扑的正规Laplacian图谱稳定不变特征及其建模、仿真与评估技术
  • 批准号:
    61402485
  • 批准年份:
    2014
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
Internet网中病毒的检测-扩散耦合动力学模型及最优控制策略的研究
  • 批准号:
    61304117
  • 批准年份:
    2013
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于交通流量的Internet网病毒扩散动力学行为研究
  • 批准号:
    61201173
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
Internet环境下构件的自适应组装与验证研究
  • 批准号:
    61262012
  • 批准年份:
    2012
  • 资助金额:
    45.0 万元
  • 项目类别:
    地区科学基金项目
Internet环境下组合式软件的时空进程代数刻画及模型检测
  • 批准号:
    61262002
  • 批准年份:
    2012
  • 资助金额:
    43.0 万元
  • 项目类别:
    地区科学基金项目
面向持久可访问性的Internet通信抗干扰模型与方法
  • 批准号:
    61100174
  • 批准年份:
    2011
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
Internet环境中基于语义Web的开放式决策支持系统关键技术研究
  • 批准号:
    61074134
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目

相似海外基金

IoDT2 - Internet of Digital Twin Things
IoDT2 - 数字孪生物联网
  • 批准号:
    10098627
  • 财政年份:
    2024
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Collaborative R&D
CAREER: Enabling Memory-Centric Computing from Internet of Things to Cloud
职业:实现从物联网到云的以内存为中心的计算
  • 批准号:
    2339317
  • 财政年份:
    2024
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Continuing Grant
SBIR Phase I: A Cyber Assured Space Internet Device
SBIR 第一阶段:网络安全空间互联网设备
  • 批准号:
    2327618
  • 财政年份:
    2024
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Standard Grant
Secure Management of Internet of Things Data for Critical Surveillance
关键监控物联网数据的安全管理
  • 批准号:
    LP230100276
  • 财政年份:
    2024
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Linkage Projects
Sensing the Forest - Let the Forest Speak using the Internet of Things, Acoustic Ecology and Creative AI
感知森林——物联网、声学生态、创意人工智能让森林说话
  • 批准号:
    AH/X011585/2
  • 财政年份:
    2024
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Research Grant
Conference: CPS: NSF Student Travel Grant for 2024 Cyber-Physical Systems and Internet-of-Things Week (CPS-IoT Week)
会议:CPS:2024 年网络物理系统和物联网周(CPS-IoT Week)的 NSF 学生旅行补助金
  • 批准号:
    2422416
  • 财政年份:
    2024
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Standard Grant
SBIR Phase I: An Industrial Internet of Things (IIoT) Electromechanical Steam Trap for Greenhouse Gas Reduction and Energy Savings
SBIR 第一阶段:用于减少温室气体排放和节能的工业物联网 (IIoT) 机电蒸汽疏水阀
  • 批准号:
    2324530
  • 财政年份:
    2024
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Standard Grant
I-Corps: Rice-sized Wireless Bluetooth Sensors for the Next Generation Internet of Things
I-Corps:用于下一代物联网的米粒大小的无线蓝牙传感器
  • 批准号:
    2402731
  • 财政年份:
    2024
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Standard Grant
CAREER: Securing and Evolving Internet Security Protocols for Naming and Routing
职业:保护和发展用于命名和路由的互联网安全协议
  • 批准号:
    2339378
  • 财政年份:
    2024
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Continuing Grant
Towards The Quantum Internet: Interconnecting Quantum Networks
迈向量子互联网:互连量子网络
  • 批准号:
    EP/X039439/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了