CAREER: Enabling Memory-Centric Computing from Internet of Things to Cloud

职业:实现从物联网到云的以内存为中心的计算

基本信息

  • 批准号:
    2339317
  • 负责人:
  • 金额:
    $ 58.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-01 至 2029-03-31
  • 项目状态:
    未结题

项目摘要

Today's computing landscape is predominantly driven by data-centric applications, where their performance heavily relies on efficient data access and processing. Memory-centric computing revolutionizes data processing by performing computations in close proximity to the locations where data is generated/captured or stored, such as sensors, memory, and storage devices, and capitalizes on the extensive parallelism inherent in memory arrays. Therefore, it fundamentally tackles the data movement and instruction processing bottleneck, offering a powerful solution for data-intensive workloads in domains like machine learning and genomics, with far-reaching implications for scientific advancements. The overarching goal of this project is to facilitate the paradigm shift from compute-centric to memory-centric systems and seamlessly and securely integrate them into today's modern systems. This transformation will enable efficient and secure computation, fostering advancements in data processing capabilities. This project aims to integrate the acquired methodologies and insights into age-appropriate curricula, from K-12 to graduate-level courses. It also incorporates several STEM (science, technology, engineering and mathematics) enrichment activities for local K-12 and community college students in the Inland Empire.This award aims to facilitate the integration of the memory-centric computing paradigm into present-day computing systems. To fully exploit the potential of memory-centric computing, this project takes a holistic approach by co-designing the entire computing stack to facilitate the adoption of near-data processing in modern architectures. It will also investigate the security and privacy challenges posed by memory-centric computing solutions and propose lightweight techniques to effectively address these challenges. The developed frameworks and tools will be made publicly available to benefit the computer science community and to serve as the foundation for new course development and creating research opportunities for undergraduate and high school students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当今的计算环境主要由以数据为中心的应用程序驱动,这些应用程序的性能严重依赖于高效的数据访问和处理。以存储器为中心的计算通过在生成/捕获或存储数据的位置(诸如传感器、存储器和存储设备)附近执行计算来彻底改变数据处理,并且利用存储器阵列中固有的广泛并行性。因此,它从根本上解决了数据移动和指令处理瓶颈,为机器学习和基因组学等领域的数据密集型工作负载提供了强大的解决方案,对科学进步产生了深远的影响。该项目的首要目标是促进从以计算为中心的系统到以内存为中心的系统的范式转变,并将其无缝安全地集成到当今的现代系统中。这种转变将实现高效和安全的计算,促进数据处理能力的进步。该项目旨在将获得的方法和见解整合到适合年龄的课程中,从K-12到研究生课程。该奖项还为内陆帝国的当地K-12和社区大学学生提供了几项STEM(科学,技术,工程和数学)丰富活动。该奖项旨在促进以内存为中心的计算范式融入当今的计算系统。为了充分利用以内存为中心的计算的潜力,该项目采取了一种整体方法,通过共同设计整个计算堆栈,以促进在现代架构中采用近数据处理。它还将调查以内存为中心的计算解决方案所带来的安全和隐私挑战,并提出轻量级技术来有效地解决这些挑战。开发的框架和工具将公开提供,以造福计算机科学界,并作为新课程开发的基础,为本科生和高中生创造研究机会。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elaheh Sadredini其他文献

Sequential pattern mining with the Micron automata processor
使用 Micron 自动机处理器进行顺序模式挖掘
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ke Wang;Elaheh Sadredini;K. Skadron
  • 通讯作者:
    K. Skadron
MAGIC-DHT: Fast in-memory computing for Discrete Hadamard Transform
MAGIC-DHT:离散 Hadamard 变换的快速内存计算
  • DOI:
    10.1016/j.vlsi.2023.102060
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maliha Tasnim;Chinmay Raje;Shuyuan Yu;Elaheh Sadredini;S. Tan
  • 通讯作者:
    S. Tan
Sealer: In-SRAM AES for High-Performance and Low-Overhead Memory Encryption
Sealer:SRAM 内 AES,用于高性能和低开销内存加密
Fulcrum: A Simplified Control and Access Mechanism Toward Flexible and Practical In-Situ Accelerators
Fulcrum:一种简化的控制和访问机制,实现灵活实用的原位加速器
Hierarchical Pattern Mining with the Automata Processor
使用自动机处理器进行分层模式挖掘

Elaheh Sadredini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elaheh Sadredini', 18)}}的其他基金

Travel: NSF Student Travel Grant for 2024 ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS)
旅行:2024 年 ACM 编程语言和操作系统架构支持国际会议 (ASPLOS) 的 NSF 学生旅行补助金
  • 批准号:
    2327889
  • 财政年份:
    2023
  • 资助金额:
    $ 58.76万
  • 项目类别:
    Standard Grant

相似海外基金

CRII: CSR: Enabling On-Device Continual Learning through Enhancing Efficiency of Computing, Memory, and Data
CRII:CSR:通过提高计算、内存和数据的效率实现设备上的持续学习
  • 批准号:
    2348376
  • 财政年份:
    2024
  • 资助金额:
    $ 58.76万
  • 项目类别:
    Standard Grant
Collaborative Research: Breaking the 1D barrier in radiative transfer: Fast, low-memory numerical methods for enabling inverse problems and machine learning emulators
合作研究:打破辐射传输中的一维障碍:用于实现逆问题和机器学习模拟器的快速、低内存数值方法
  • 批准号:
    2324369
  • 财政年份:
    2023
  • 资助金额:
    $ 58.76万
  • 项目类别:
    Standard Grant
Collaborative Research: Breaking the 1D barrier in radiative transfer: Fast, low-memory numerical methods for enabling inverse problems and machine learning emulators
合作研究:打破辐射传输中的一维障碍:用于实现逆问题和机器学习模拟器的快速、低内存数值方法
  • 批准号:
    2324368
  • 财政年份:
    2023
  • 资助金额:
    $ 58.76万
  • 项目类别:
    Standard Grant
Enabling precise cell-type-specific dissection of orientation and memory circuits in retrosplenial cortex
实现压后皮层定向和记忆电路的精确细胞类型特异性解剖
  • 批准号:
    10446099
  • 财政年份:
    2022
  • 资助金额:
    $ 58.76万
  • 项目类别:
Collaborative Research: Elements: SciMem: Enabling High Performance Multi-Scale Simulation on Big Memory Platforms
协作研究:要素:SciMem:在大内存平台上实现高性能多尺度仿真
  • 批准号:
    2103967
  • 财政年份:
    2021
  • 资助金额:
    $ 58.76万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: SciMem: Enabling High Performance Multi-Scale Simulation on Big Memory Platforms
协作研究:要素:SciMem:在大内存平台上实现高性能多尺度仿真
  • 批准号:
    2104116
  • 财政年份:
    2021
  • 资助金额:
    $ 58.76万
  • 项目类别:
    Standard Grant
CRII: SHF: Enabling Metal Inter-Layer Via Device Utilization for On-chip Memory in Monolithic Three-Dimensional Integrated Circuits
CRII:SHF:通过器件利用金属层间通孔实现单片三维集成电路中的片上存储器
  • 批准号:
    2105164
  • 财政年份:
    2021
  • 资助金额:
    $ 58.76万
  • 项目类别:
    Standard Grant
Collaborative Research: FoMR: Enabling High Instructions-per-Cycle (IPC) Counts in Future Multi-NUMA (Non Uniform Memory Access) Systems
合作研究:FoMR:在未来的多 NUMA(非均匀内存访问)系统中实现高每周期指令 (IPC) 计数
  • 批准号:
    2011213
  • 财政年份:
    2020
  • 资助金额:
    $ 58.76万
  • 项目类别:
    Standard Grant
Collaborative Research: FoMR: Enabling High Instructions-per-Cycle (IPC) Counts in Future Multi-NUMA (Non Uniform Memory Access) Systems
合作研究:FoMR:在未来的多 NUMA(非均匀内存访问)系统中实现高每周期指令 (IPC) 计数
  • 批准号:
    2011212
  • 财政年份:
    2020
  • 资助金额:
    $ 58.76万
  • 项目类别:
    Standard Grant
III: Small: Enabling the Best Utilization of GPUs for In-Memory Data Management Systems
III:小型:为内存数据管理系统实现 GPU 的最佳利用
  • 批准号:
    1718450
  • 财政年份:
    2017
  • 资助金额:
    $ 58.76万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了