A Framework for Predictive Hybrid Models of Turbulence

湍流预测混合模型的框架

基本信息

  • 批准号:
    1904826
  • 负责人:
  • 金额:
    $ 47.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Design and operation of advanced technological systems rely on the ability to predict their behavior using reliable computer simulation. Many important systems including automotive, aeronautic, propulsion, power generation and wind energy systems involve complex fluid flows. However, their reliable simulation is hindered by the fact that the fluid flows in these systems are mostly turbulent. This means that the fluid motion is chaotic and unpredictable. There are currently no accurate and broadly applicable models to describe the effects of turbulence on such flows. Recent approaches to computer modeling of complex turbulent flows could address several fundamental limitations of the previous models and where they have failed to produce accurate simulations of complex turbulent flows. Improving turbulence models are therefore necessary for accurate description of the fluid motion in complex fluid systems. This requires addressing several outstanding challenges in this field of research. The new proposed modeling framework is aimed at addressing these challenges to enable accurate and reliable computer simulation of turbulent flows. This long- sought capability will allow the development of more capable and efficient fluid flow systems, like those in the areas listed above.It has long been recognized that Reynolds averaged Navier-Stokes (RANS) and large eddy simulation (LES) models of turbulence have complementary strengths and weaknesses suggesting their hybridization to produce a more capable model. However, previous hybridization techniques were found to have fundamental flaws. A new hybrid modeling approach eliminates these flaws and forms the basis for the research proposed here. This approach enables the consideration of three additional turbulence modeling challenges, which when addressed will result in highly reliable and broadly applicable hybrid RANS/LES models. These challenges are: the active exchange of energy between the resolved and unresolved turbulence to allow rapid development of resolved fluctuations; the elimination of large errors in LES that arise from the strongly inhomogeneous resolution that is usually necessary in complex fluid systems; and, the generalization of LES models to account for anisotropy of the unresolved turbulence which inevitably arises in hybrid simulations of complex turbulent flows. The result of these developments will be robust predictive hybrid RANS/LES models that will enable technological advances in many systems that involve turbulent fluid flow.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
先进技术系统的设计和操作依赖于使用可靠的计算机模拟来预测其行为的能力。包括汽车、航空、推进、发电和风能系统在内的许多重要系统都涉及复杂的流体流动。然而,它们的可靠模拟受到这些系统中的流体流动大多是湍流的事实的阻碍。这意味着流体运动是混乱和不可预测的。目前还没有准确且广泛适用的模型来描述湍流对此类流动的影响。最近的复杂湍流的计算机建模方法可以解决以前模型的几个基本限制,以及它们未能产生复杂湍流的精确模拟的地方。因此,改进湍流模型对于精确描述复杂流体系统中的流体运动是必要的。这需要解决这一研究领域的几个突出挑战。新提出的建模框架旨在解决这些挑战,以实现湍流的准确和可靠的计算机模拟。这种长期追求的能力将允许开发更有能力和更有效的流体流动系统,如上面列出的领域中的那些。长期以来,人们已经认识到,湍流的雷诺平均纳维尔-斯托克斯(RANS)和大涡模拟(LES)模型具有互补的优点和缺点,这表明它们的混合可以产生更有能力的模型。然而,以前的杂交技术被发现有根本性的缺陷。一种新的混合建模方法消除了这些缺陷,并形成了这里提出的研究的基础。这种方法可以考虑三个额外的湍流建模挑战,解决后将导致高度可靠和广泛适用的混合RANS/LES模型。这些挑战是:的解决和未解决的湍流之间的能量的积极交换,以允许快速发展的解决波动;消除大的错误,在LES中所产生的强烈不均匀的决议,这通常是必要的,在复杂的流体系统;和,一般化的LES模型,以占各向异性的未解决的湍流不可避免地出现在混合模拟复杂的湍流。这些发展的结果将是强大的预测混合RANS/LES模型,这将使技术进步,在许多系统,涉及湍流流体flow.This奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effects of resolution inhomogeneity in large-eddy simulation
大涡模拟中分辨率不均匀性的影响
  • DOI:
    10.1103/physrevfluids.6.074604
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Yalla, Gopal R.;Oliver, Todd A.;Haering, Sigfried W.;Engquist, Björn;Moser, Robert D.
  • 通讯作者:
    Moser, Robert D.
Numerical dispersion effects on the energy cascade in large-eddy simulation
大涡模拟中能量级联的数值色散效应
  • DOI:
    10.1103/physrevfluids.6.l092601
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Yalla, Gopal R.;Oliver, Todd A.;Moser, Robert D.
  • 通讯作者:
    Moser, Robert D.
Active model split hybrid RANS/LES
  • DOI:
    10.1103/physrevfluids.7.014603
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    S. Haering;Todd A. Oliver;R. Moser
  • 通讯作者:
    S. Haering;Todd A. Oliver;R. Moser
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Moser其他文献

A fantasy adventure game as a learning environment: why learning to program is so difficult and what can be done about it
作为学习环境的奇幻冒险游戏:为什么学习编程如此困难以及可以采取什么措施
Acute and Chronic Toxicity of Uncured Resin Feedstocks for Vat Photopolymerization 3D Printing to a Cladoceran (Ceriodaphnia Dubia)
  • DOI:
    10.1007/s00128-023-03698-5
  • 发表时间:
    2023-02-16
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Mark Ballentine;Alan Kennedy;Nicolas Melby;Anthony Bednar;Robert Moser;Lee C. Moores;Erik M. Alberts;Charles H. Laber;Rebecca A. Crouch
  • 通讯作者:
    Rebecca A. Crouch

Robert Moser的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Moser', 18)}}的其他基金

Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347422
  • 财政年份:
    2024
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
Large Eddy Simulation in Complex Turbulent Flows with Coarse Resolution
复杂湍流中的粗分辨率大涡模拟
  • 批准号:
    2321473
  • 财政年份:
    2023
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
Collaborative Research: NISC SI2-S2I2 Conceptualization of CFDSI: Model, Data, and Analysis Integration for End-to-End Support of Fluid Dynamics Discovery and Innovation
合作研究:NISC SI2-S2I2 CFDSI 概念化:模型、数据和分析集成,用于流体动力学发现和创新的端到端支持
  • 批准号:
    1743191
  • 财政年份:
    2018
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Continuing Grant
A Workshop on the Development of Fluid Mechanics Community Software and Data Resources
流体力学社区软件和数据资源开发研讨会
  • 批准号:
    0950102
  • 财政年份:
    2009
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Discovery in High Reynolds Number Turbulence via Advanced Tools for Petascale Simulation and Analysis
协作研究:通过用于千万级模拟和分析的高级工具实现高雷诺数湍流的发现
  • 批准号:
    0749286
  • 财政年份:
    2007
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Continuing Grant
Development and Implementation of Practical Optimal LES Models
实用最优 LES 模型的开发和实施
  • 批准号:
    0530600
  • 财政年份:
    2005
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
Development and Implementation of Practical Optimal LES Models
实用最优 LES 模型的开发和实施
  • 批准号:
    0352552
  • 财政年份:
    2004
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
Optimal Large Eddy Simulation of Turbulence
湍流的优化大涡模拟
  • 批准号:
    0001435
  • 财政年份:
    2000
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Continuing Grant
A Workshop to Facilitate Coordinated Experimental/Computational Contributions to LES Modeling
促进 LES 建模协调实验/计算贡献的研讨会
  • 批准号:
    9910929
  • 财政年份:
    1999
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
Controlling Turbulence as a Chaotic System
将湍流作为混沌系统进行控制
  • 批准号:
    9729189
  • 财政年份:
    1998
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant

相似海外基金

Predictive multiscale free energy simulations of hybrid transition metal catalysts
混合过渡金属催化剂的预测多尺度自由能模拟
  • 批准号:
    EP/W013738/1
  • 财政年份:
    2022
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Research Grant
ERI: A Hybrid Mechanics-Guided Machine Learning-Based Predictive Framework for the Performance of Rocking Foundations During Earthquake Loading
ERI:基于混合力学引导的机器学习预测框架,用于地震加载期间摇摆基础的性能
  • 批准号:
    2138631
  • 财政年份:
    2022
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
Predictive multiscale free energy simulations of hybrid transition metal catalysts
混合过渡金属催化剂的预测多尺度自由能模拟
  • 批准号:
    EP/W014378/1
  • 财政年份:
    2022
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Research Grant
Predictive multiscale free energy simulations of hybrid transition metal catalysts
混合过渡金属催化剂的预测多尺度自由能模拟
  • 批准号:
    EP/W014580/1
  • 财政年份:
    2022
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Research Grant
A study on fast and stable power conversion control with hybrid model predictive control and machine learning
混合模型预测控制和机器学习的快速稳定功率转换控制研究
  • 批准号:
    19K04355
  • 财政年份:
    2019
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Chemical Guidelines for Predictive Materials Integration in Hybrid Nanoparticles
混合纳米粒子中预测材料集成的化学指南
  • 批准号:
    1707830
  • 财政年份:
    2018
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
Understanding Surface Wetting and Vapor Adsorption Induced Degradation Pathways of Organic-Inorganic Hybrid Perovskites through Predictive Atomistic Simulations
通过预测原子模拟了解有机-无机杂化钙钛矿的表面润湿和蒸汽吸附诱导的降解途径
  • 批准号:
    1708968
  • 财政年份:
    2017
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
Hybrid Predictive Control for Distributed Multi-agent Systems
分布式多智能体系统的混合预测控制
  • 批准号:
    1710621
  • 财政年份:
    2017
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
Development of Transcriptome-Wide Predictive Models of Phenotypic Traits for Selective Breeding and Hybrid Performance Predictions in Maize
玉米选择性育种和杂交性能预测的表型性状全转录组预测模型的开发
  • 批准号:
    1711662
  • 财政年份:
    2017
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Fellowship Award
Model Predictive Control for Energy Management in Electric Hybrid Vehicles
电动混合动力汽车能量管理的模型预测控制
  • 批准号:
    1793329
  • 财政年份:
    2016
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了