A Framework for Predictive Hybrid Models of Turbulence
湍流预测混合模型的框架
基本信息
- 批准号:1904826
- 负责人:
- 金额:$ 47.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Design and operation of advanced technological systems rely on the ability to predict their behavior using reliable computer simulation. Many important systems including automotive, aeronautic, propulsion, power generation and wind energy systems involve complex fluid flows. However, their reliable simulation is hindered by the fact that the fluid flows in these systems are mostly turbulent. This means that the fluid motion is chaotic and unpredictable. There are currently no accurate and broadly applicable models to describe the effects of turbulence on such flows. Recent approaches to computer modeling of complex turbulent flows could address several fundamental limitations of the previous models and where they have failed to produce accurate simulations of complex turbulent flows. Improving turbulence models are therefore necessary for accurate description of the fluid motion in complex fluid systems. This requires addressing several outstanding challenges in this field of research. The new proposed modeling framework is aimed at addressing these challenges to enable accurate and reliable computer simulation of turbulent flows. This long- sought capability will allow the development of more capable and efficient fluid flow systems, like those in the areas listed above.It has long been recognized that Reynolds averaged Navier-Stokes (RANS) and large eddy simulation (LES) models of turbulence have complementary strengths and weaknesses suggesting their hybridization to produce a more capable model. However, previous hybridization techniques were found to have fundamental flaws. A new hybrid modeling approach eliminates these flaws and forms the basis for the research proposed here. This approach enables the consideration of three additional turbulence modeling challenges, which when addressed will result in highly reliable and broadly applicable hybrid RANS/LES models. These challenges are: the active exchange of energy between the resolved and unresolved turbulence to allow rapid development of resolved fluctuations; the elimination of large errors in LES that arise from the strongly inhomogeneous resolution that is usually necessary in complex fluid systems; and, the generalization of LES models to account for anisotropy of the unresolved turbulence which inevitably arises in hybrid simulations of complex turbulent flows. The result of these developments will be robust predictive hybrid RANS/LES models that will enable technological advances in many systems that involve turbulent fluid flow.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
先进技术系统的设计和运行依赖于使用可靠的计算机模拟来预测其行为的能力。许多重要的系统,包括汽车、航空、推进、发电和风能系统,都涉及复杂的流体流动。然而,这些系统中的流体流动大多是湍流的,这一事实阻碍了他们可靠的模拟。这意味着流体运动是混乱和不可预测的。目前还没有准确和广泛适用的模型来描述湍流对这种流动的影响。最近对复杂湍流进行计算机模拟的方法可以解决以前模型的几个基本局限性,并且它们无法产生对复杂湍流的准确模拟。因此,为了准确地描述复杂流体系统中的流体运动,必须改进湍流模型。这需要解决这一研究领域的几个突出挑战。新提议的建模框架旨在应对这些挑战,以实现对湍流的准确和可靠的计算机模拟。这种长期寻求的能力将允许开发更有能力和更有效的流体流动系统,如上面列出的领域。长期以来,人们已经认识到,雷诺平均Navier-Stokes(RANS)和大涡模拟(LES)湍流模型具有互补的优势和劣势,这表明它们混合起来可以产生更强大的模型。然而,之前的杂交技术被发现存在根本性的缺陷。一种新的混合建模方法消除了这些缺陷,并为本文提出的研究奠定了基础。这种方法可以考虑三个额外的湍流建模挑战,当解决这些挑战时,将产生高度可靠和广泛适用的混合RAN/LES模型。这些挑战是:已解决和未解决的湍流之间的能量交换,以允许已解决的波动的快速发展;消除由于复杂流体系统中通常需要的强非均匀分辨率而导致的大涡模拟中的大误差;以及,推广大涡模拟模型来解释复杂湍流混合模拟中不可避免地出现的未解决的湍流的各向异性。这些发展的结果将是强大的预测性混合RAN/LES模型,它将使涉及湍流流动的许多系统的技术进步成为可能。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effects of resolution inhomogeneity in large-eddy simulation
大涡模拟中分辨率不均匀性的影响
- DOI:10.1103/physrevfluids.6.074604
- 发表时间:2021
- 期刊:
- 影响因子:2.7
- 作者:Yalla, Gopal R.;Oliver, Todd A.;Haering, Sigfried W.;Engquist, Björn;Moser, Robert D.
- 通讯作者:Moser, Robert D.
Numerical dispersion effects on the energy cascade in large-eddy simulation
大涡模拟中能量级联的数值色散效应
- DOI:10.1103/physrevfluids.6.l092601
- 发表时间:2021
- 期刊:
- 影响因子:2.7
- 作者:Yalla, Gopal R.;Oliver, Todd A.;Moser, Robert D.
- 通讯作者:Moser, Robert D.
Active model split hybrid RANS/LES
- DOI:10.1103/physrevfluids.7.014603
- 发表时间:2020-06
- 期刊:
- 影响因子:2.7
- 作者:S. Haering;Todd A. Oliver;R. Moser
- 通讯作者:S. Haering;Todd A. Oliver;R. Moser
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Moser其他文献
A fantasy adventure game as a learning environment: why learning to program is so difficult and what can be done about it
作为学习环境的奇幻冒险游戏:为什么学习编程如此困难以及可以采取什么措施
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Robert Moser - 通讯作者:
Robert Moser
Acute and Chronic Toxicity of Uncured Resin Feedstocks for Vat Photopolymerization 3D Printing to a Cladoceran (Ceriodaphnia Dubia)
- DOI:
10.1007/s00128-023-03698-5 - 发表时间:
2023-02-16 - 期刊:
- 影响因子:2.200
- 作者:
Mark Ballentine;Alan Kennedy;Nicolas Melby;Anthony Bednar;Robert Moser;Lee C. Moores;Erik M. Alberts;Charles H. Laber;Rebecca A. Crouch - 通讯作者:
Rebecca A. Crouch
Robert Moser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Moser', 18)}}的其他基金
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347422 - 财政年份:2024
- 资助金额:
$ 47.08万 - 项目类别:
Standard Grant
Large Eddy Simulation in Complex Turbulent Flows with Coarse Resolution
复杂湍流中的粗分辨率大涡模拟
- 批准号:
2321473 - 财政年份:2023
- 资助金额:
$ 47.08万 - 项目类别:
Standard Grant
Collaborative Research: NISC SI2-S2I2 Conceptualization of CFDSI: Model, Data, and Analysis Integration for End-to-End Support of Fluid Dynamics Discovery and Innovation
合作研究:NISC SI2-S2I2 CFDSI 概念化:模型、数据和分析集成,用于流体动力学发现和创新的端到端支持
- 批准号:
1743191 - 财政年份:2018
- 资助金额:
$ 47.08万 - 项目类别:
Continuing Grant
A Workshop on the Development of Fluid Mechanics Community Software and Data Resources
流体力学社区软件和数据资源开发研讨会
- 批准号:
0950102 - 财政年份:2009
- 资助金额:
$ 47.08万 - 项目类别:
Standard Grant
Collaborative Research: Enabling Discovery in High Reynolds Number Turbulence via Advanced Tools for Petascale Simulation and Analysis
协作研究:通过用于千万级模拟和分析的高级工具实现高雷诺数湍流的发现
- 批准号:
0749286 - 财政年份:2007
- 资助金额:
$ 47.08万 - 项目类别:
Continuing Grant
Development and Implementation of Practical Optimal LES Models
实用最优 LES 模型的开发和实施
- 批准号:
0530600 - 财政年份:2005
- 资助金额:
$ 47.08万 - 项目类别:
Standard Grant
Development and Implementation of Practical Optimal LES Models
实用最优 LES 模型的开发和实施
- 批准号:
0352552 - 财政年份:2004
- 资助金额:
$ 47.08万 - 项目类别:
Standard Grant
Optimal Large Eddy Simulation of Turbulence
湍流的优化大涡模拟
- 批准号:
0001435 - 财政年份:2000
- 资助金额:
$ 47.08万 - 项目类别:
Continuing Grant
A Workshop to Facilitate Coordinated Experimental/Computational Contributions to LES Modeling
促进 LES 建模协调实验/计算贡献的研讨会
- 批准号:
9910929 - 财政年份:1999
- 资助金额:
$ 47.08万 - 项目类别:
Standard Grant
Controlling Turbulence as a Chaotic System
将湍流作为混沌系统进行控制
- 批准号:
9729189 - 财政年份:1998
- 资助金额:
$ 47.08万 - 项目类别:
Standard Grant
相似海外基金
Predictive multiscale free energy simulations of hybrid transition metal catalysts
混合过渡金属催化剂的预测多尺度自由能模拟
- 批准号:
EP/W013738/1 - 财政年份:2022
- 资助金额:
$ 47.08万 - 项目类别:
Research Grant
ERI: A Hybrid Mechanics-Guided Machine Learning-Based Predictive Framework for the Performance of Rocking Foundations During Earthquake Loading
ERI:基于混合力学引导的机器学习预测框架,用于地震加载期间摇摆基础的性能
- 批准号:
2138631 - 财政年份:2022
- 资助金额:
$ 47.08万 - 项目类别:
Standard Grant
Predictive multiscale free energy simulations of hybrid transition metal catalysts
混合过渡金属催化剂的预测多尺度自由能模拟
- 批准号:
EP/W014378/1 - 财政年份:2022
- 资助金额:
$ 47.08万 - 项目类别:
Research Grant
Predictive multiscale free energy simulations of hybrid transition metal catalysts
混合过渡金属催化剂的预测多尺度自由能模拟
- 批准号:
EP/W014580/1 - 财政年份:2022
- 资助金额:
$ 47.08万 - 项目类别:
Research Grant
A study on fast and stable power conversion control with hybrid model predictive control and machine learning
混合模型预测控制和机器学习的快速稳定功率转换控制研究
- 批准号:
19K04355 - 财政年份:2019
- 资助金额:
$ 47.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Chemical Guidelines for Predictive Materials Integration in Hybrid Nanoparticles
混合纳米粒子中预测材料集成的化学指南
- 批准号:
1707830 - 财政年份:2018
- 资助金额:
$ 47.08万 - 项目类别:
Standard Grant
Understanding Surface Wetting and Vapor Adsorption Induced Degradation Pathways of Organic-Inorganic Hybrid Perovskites through Predictive Atomistic Simulations
通过预测原子模拟了解有机-无机杂化钙钛矿的表面润湿和蒸汽吸附诱导的降解途径
- 批准号:
1708968 - 财政年份:2017
- 资助金额:
$ 47.08万 - 项目类别:
Standard Grant
Hybrid Predictive Control for Distributed Multi-agent Systems
分布式多智能体系统的混合预测控制
- 批准号:
1710621 - 财政年份:2017
- 资助金额:
$ 47.08万 - 项目类别:
Standard Grant
Development of Transcriptome-Wide Predictive Models of Phenotypic Traits for Selective Breeding and Hybrid Performance Predictions in Maize
玉米选择性育种和杂交性能预测的表型性状全转录组预测模型的开发
- 批准号:
1711662 - 财政年份:2017
- 资助金额:
$ 47.08万 - 项目类别:
Fellowship Award
Model Predictive Control for Energy Management in Electric Hybrid Vehicles
电动混合动力汽车能量管理的模型预测控制
- 批准号:
1793329 - 财政年份:2016
- 资助金额:
$ 47.08万 - 项目类别:
Studentship














{{item.name}}会员




