Scalable Magnetic Anisotropy from Molecular Lanthanide Building Units

分子镧系元素构建单元的可扩展磁各向异性

基本信息

  • 批准号:
    1904937
  • 负责人:
  • 金额:
    $ 41.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-15 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Non-technical summary:One modern approach to the design of new functional materials is through the construction and connection of molecular building units. In this approach, chemists synthesize molecules with structures that, when linked together to form a bulk material, lead to a material with specific properties. New properties can be introduced and tuned simply through modification of the molecular building unit. By analogy, a limitless number of structures can be designed starting with bricks and mortar, as opposed to one structure from a single pre-formed slab of fired clay. An area of synthesis where the building block approach remains a challenge is magnetic materials. Magnetic materials are vital components in nearly every aspect of modern life, yet only a handful of materials meet the requirements for use in applications, and none of these are made through a molecular building unit approach. The complexity of interactions that determine what direction the magnetic moment wants to align (its magnetic anisotropy) contributes to the difficulties in making the materials. As molecular building units are connected, new interactions disrupt their individual magnetic anisotropy, drastically weakening it and destroying any rational connection with the anisotropy of the original building unit. Returning to the construction analogy, connecting molecular magnets to make a bulk magnet is often akin to using bricks that spontaneously become raw clay when stacked. To change this, with support from the Solid State and Materials Chemistry program and the Chemical Structure, Dynamics and Mechanisms B program at NSF, researchers at UCSD are developing molecular building units that retain their large anisotropy values when connected to form an extended magnetic material. This class of new materials, built from individual units containing a rare earth ion, Er3+, allows the researchers to create designer magnetic structures that mimic rare and difficult-to-study motifs from solid state chemistry or create entirely new magnetic structures by design. Additionally, this project educates graduate and undergraduate students through innovative approaches such as a "In the Lab" live-feed featuring lab tours and demonstrations to enhance classroom teaching.Technical summary:A molecular building unit approach to magnetic materials can be realized only if the preferred orientation of the electron spin (its magnetic anisotropy) can be controlled. With this project, supported by the Solid State and Materials Chemistry program and the Chemical Structure, Dynamics and Mechanisms B program at NSF, molecular building blocks are identified that are capable of controlling anisotropy in the presence of the intermolecular linkages necessary to construct magnetic materials. Generating and fixing the magnetic anisotropy at the single-ion level, shifts research efforts to the rational design of complex spin geometries, enhanced magnetic coupling, and expanded dimensionality. The design principles for creating strongly anisotropic magnetism by combining a lanthanide with its specific, suitable crystal-field environment are well understood. Maintaining this anisotropy while introducing coupling interactions, however, is a complex challenge. One approach is to determine a single ligand-lanthanide combination that can direct the anisotropy roughly independent of the rest of the coordination sphere. Through computational and experimental results researchers have previously shown that the interaction between Er(III) and the cyclooctatetraenide dianion fulfills the requirements of a magnetic building unit of roughly fixed anisotropy. In this project researchers at UCSD use the molecular magnetic building unit to probe the behavior of anisotropic spins in the presence of both exchange and magnetic dipolar coupling, which enables them to construct new magnets and to independently tune system parameters, unavailable in any other class of materials. Fixing the two-site anisotropy and enhancing the exchange interaction creates stronger and switchable magnetic interactions between ions. More complex 1- to 3-dimensional spin structures that explore the limits of magnetic strength are created from these molecular building blocks. Each aspect of the system, from the coupling anisotropy and strength to the connectivity and dimensionality, allows the controlled study of an array of fundamental magnetic phenomena - often in ways that are not tunable or practical in traditional oxide or intermetallic magnetic materials. While spintronic technology has become ubiquitous, it is almost exclusively based on top-down approaches. Molecule-based materials offer the promise of enhanced tunability, terminal scalability, self-assembly, and unique quantum-confinement properties that align well with the goals of the NSF Big Ideas category: Quantum Leap.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结:设计新功能材料的一种现代方法是通过分子构建单元的构建和连接。在这种方法中,化学家合成具有结构的分子,当连接在一起形成块状材料时,会导致具有特定特性的材料。新的性质可以简单地通过分子结构单元的修饰来引入和调节。通过类比,可以从砖和砂浆开始设计无限数量的结构,而不是从一个预制的烧制粘土板开始设计一个结构。其中构建块方法仍然是一个挑战的合成领域是磁性材料。磁性材料几乎是现代生活各个方面的重要组成部分,但只有少数材料符合应用要求,而且这些材料都不是通过分子构建单元方法制成的。决定磁矩方向的相互作用的复杂性(其磁各向异性)导致了制造材料的困难。随着分子构建单元的连接,新的相互作用破坏了它们各自的磁各向异性,大大削弱了它,破坏了与原始构建单元的各向异性的任何合理联系。回到建筑类比,连接分子磁体来制造大块磁体通常类似于使用堆叠时自发变成生粘土的砖块。为了改变这一点,在NSF的固态和材料化学计划以及化学结构,动力学和机制B计划的支持下,UCSD的研究人员正在开发分子构建单元,这些单元在连接形成扩展磁性材料时保持其大的各向异性值。这类新材料由含有稀土离子Er 3+的单个单元构建,使研究人员能够创建设计师磁性结构,模仿固态化学中罕见且难以研究的基序,或通过设计创建全新的磁性结构。此外,该项目还通过创新的方法,如“In the Lab”(在实验室)直播,以实验室图尔斯和演示为特色,对研究生和本科生进行教育,以加强课堂教学。技术总结:磁性材料的分子构建单元方法只有在电子自旋(其磁各向异性)的优选方向可以控制的情况下才能实现。该项目由NSF的固态和材料化学计划以及化学结构、动力学和机制B计划支持,确定了能够在构建磁性材料所需的分子间连接存在下控制各向异性的分子构建块。在单离子水平上产生和固定磁各向异性,将研究工作转移到复杂自旋几何结构的合理设计,增强磁耦合和扩展维度。通过将镧系元素与其特定的、合适的晶体场环境相结合来产生强各向异性磁性的设计原理是众所周知的。然而,在引入耦合相互作用的同时保持这种各向异性是一个复杂的挑战。一种方法是确定一个单一的配体镧系元素的组合,可以指导各向异性大致独立于其余的配位球。通过计算和实验结果,研究人员先前已经表明,Er(III)和环辛四烯二价阴离子之间的相互作用满足了大致固定各向异性的磁性构建单元的要求。在这个项目中,UCSD的研究人员使用分子磁性构建单元来探测交换和磁偶极耦合存在下各向异性自旋的行为,这使他们能够构建新的磁体并独立调整系统参数,这在任何其他类型的材料中都不可用。固定双位点各向异性和增强交换相互作用在离子之间产生更强和可切换的磁相互作用。更复杂的1到3维自旋结构,探索磁场强度的极限是从这些分子构建块创建的。该系统的每个方面,从耦合各向异性和强度到连接性和维度,都允许对一系列基本磁现象进行受控研究-通常以传统氧化物或金属间磁性材料中不可调或不实用的方式进行。虽然自旋电子技术已经变得无处不在,但它几乎完全基于自上而下的方法。基于分子的材料提供了增强的可调性、终端可扩展性、自组装和独特的量子限制特性的承诺,这些特性与NSF大创意类别的目标:量子飞跃非常一致。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A method for extending AC susceptometry to long-timescale magnetic relaxation
  • DOI:
    10.1039/c9cp03936h
  • 发表时间:
    2019-10-28
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Hilgar, Jeremy D.;Butts, Aaron K.;Rinehart, Jeffrey D.
  • 通讯作者:
    Rinehart, Jeffrey D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Rinehart其他文献

Jeffrey Rinehart的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Rinehart', 18)}}的其他基金

A Component-wise Model for Understanding Spin-Charge Interactions in Nanoparticle Solids Using Targeted Synthesis, Magnetometry, and Magnetoresistance
利用靶向合成、磁力测定和磁阻来理解纳米颗粒固体中自旋电荷相互作用的组件模型
  • 批准号:
    2322706
  • 财政年份:
    2023
  • 资助金额:
    $ 41.81万
  • 项目类别:
    Continuing Grant
Controlling Magnetic Excitation Pathways via Molecular Design of Anisotropic Dipolar Spin Arrays
通过各向异性偶极自旋阵列的分子设计控制磁激发路径
  • 批准号:
    2154830
  • 财政年份:
    2022
  • 资助金额:
    $ 41.81万
  • 项目类别:
    Standard Grant

相似海外基金

Identification of earthquake-triggered turbidites in lacustrine sedimentary sequences using anisotropy of magnetic susceptibility and micro-XRF analyses
利用磁化率各向异性和微 XRF 分析识别湖泊沉积序列中地震引发的浊积岩
  • 批准号:
    21K18395
  • 财政年份:
    2021
  • 资助金额:
    $ 41.81万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Fundamental rock magnetic studies on single-domain particles and anisotropy, and applications to paleomagnetism and petrophysics
单域粒子和各向异性的基础岩石磁性研究及其在古地磁学和岩石物理学中的应用
  • 批准号:
    RGPIN-2017-04165
  • 财政年份:
    2021
  • 资助金额:
    $ 41.81万
  • 项目类别:
    Discovery Grants Program - Individual
Strain engineering for the development of a ferromagnetic europium compound and emergence of giant magnetic anisotropy
应变工程用于铁磁铕化合物的开发和巨磁各向异性的出现
  • 批准号:
    21K05227
  • 财政年份:
    2021
  • 资助金额:
    $ 41.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Catalytic reaction of peramagnetic oxygen molecule on platinum single crystal surface with perpendicular magnetic anisotropy
具有垂直磁各向异性的铂单晶表面上的顺磁性氧分子的催化反应
  • 批准号:
    21K18801
  • 财政年份:
    2021
  • 资助金额:
    $ 41.81万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Improving perpendicular magnetic anisotropy of Fe/MgO and its voltage controllability by introducing nonmagnetic elements
引入非磁性元素改善Fe/MgO垂直磁各向异性及其电压可控性
  • 批准号:
    20K15158
  • 财政年份:
    2020
  • 资助金额:
    $ 41.81万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Fundamental rock magnetic studies on single-domain particles and anisotropy, and applications to paleomagnetism and petrophysics
单域粒子和各向异性的基础岩石磁性研究及其在古地磁学和岩石物理学中的应用
  • 批准号:
    RGPIN-2017-04165
  • 财政年份:
    2020
  • 资助金额:
    $ 41.81万
  • 项目类别:
    Discovery Grants Program - Individual
Relationship between magnetic anisotropy and anisotropic electronic structure studied by soft x-ray spectroscopy
软X射线光谱研究磁各向异性与各向异性电子结构的关系
  • 批准号:
    20K14416
  • 财政年份:
    2020
  • 资助金额:
    $ 41.81万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Experimental study on the magnetic field-driven quantum phase transition in triangular lattice antiferromagnets with easy-plane anisotropy
易平面各向异性三角晶格反铁磁体磁场驱动量子相变实验研究
  • 批准号:
    20J22215
  • 财政年份:
    2020
  • 资助金额:
    $ 41.81万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Exhibiting high coercivity of Sm-Fe system compounds by recovery of local magnetic anisotropy
通过恢复局部磁各向异性表现出 Sm-Fe 系化合物的高矫顽力
  • 批准号:
    20K05059
  • 财政年份:
    2020
  • 资助金额:
    $ 41.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Anisotropy effects of the magnetic resonance signal of biological tissue.
生物组织磁共振信号的各向异性效应。
  • 批准号:
    RGPIN-2016-05371
  • 财政年份:
    2020
  • 资助金额:
    $ 41.81万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了