Controlling Magnetic Excitation Pathways via Molecular Design of Anisotropic Dipolar Spin Arrays

通过各向异性偶极自旋阵列的分子设计控制磁激发路径

基本信息

  • 批准号:
    2154830
  • 负责人:
  • 金额:
    $ 48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

With support from the Chemical Structure, Dynamics & Mechanisms-B Program of the Chemistry Division, Jeffrey D. Rinehart of the Department of Chemistry and Biochemistry at the University of California, San Diego and his research team will work toward the design of magnetic interactions at the single molecule level. The team is targeting a specific set of materials that interact via intuitive and controllable mechanisms akin to normal bar magnets, despite their quantum mechanical nature. Access to these new materials has the potential to offer new avenues to the design of quantum spin interactions from the bottom up. The insight garnered from the group’s research will be used to hone fundamental models of spin relaxation and offer new entanglement mechanisms in quantum information science. This project combines subjects of inorganic, organic, theoretical, and computational chemistry and will be conducted primarily by graduate and undergraduate students at University of California, San Diego. Outreach within the scope of this project will be a collaboration with the Preuss School UC San Diego, a charter school for middle and high school low-income scholars with goals to become first-generation college students. Controlling the spin wavefunction of high moment, high anisotropy lanthanide-based molecules requires broadly applicable and feasibly implementable synthetic guidelines both to optimize desired magnetic properties in distinct units and to extend into materials of higher dimensionality. Many approaches have been pursued in this regard, including optimizing the crystal field to maximize single-ion anisotropy and promoting strong orbital exchange interactions between magnetic metal centers. Emphasizing control and versatility, this work attempts to develop a general strategy to emergent complexity through a building block approach based on the magnetic dipolar interaction between highly anisotropic units. Preliminary work has established that magnetic orientational anisotropy is consistently and predictably enforced for an erbium ion (Er3+) when bound to a cyclooctatetraene dianion, leaving other ligand sites available to establish connectivity. The predictable magnitude and direction of the magnetic moment allow intuitive design of through-space dipolar interaction pathways. The synthetic accessibility and flexibility of the magnetic building unit should allow for tight control of molecular structure to modify, test, and describe this interaction across symmetry, angular, and dimensional parameter space, creating the potential for a wavefunction-by-design approach to molecular spin dynamics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学结构、动力学机制-B项目的支持下,Jeffrey D.位于圣地亚哥的加州大学化学和生物化学系的莱因哈特和他的研究小组将致力于在单分子水平上设计磁相互作用。该团队的目标是一组特定的材料,这些材料通过直观和可控的机制相互作用,类似于普通的条形磁铁,尽管它们具有量子力学性质。获得这些新材料有可能为自下而上设计量子自旋相互作用提供新的途径。该小组研究中获得的见解将用于磨练自旋弛豫的基本模型,并为量子信息科学提供新的纠缠机制。这个项目结合了无机,有机,理论和计算化学的主题,主要由加州大学圣地亚哥分校的研究生和本科生进行。该项目范围内的外联活动将与Preuss School UC San Diego合作,Preuss School UC San Diego是一所面向初中和高中低收入学者的特许学校,目标是成为第一代大学生。控制高磁矩、高各向异性镧系元素基分子的自旋波函数需要广泛适用且可行实施的合成准则,以优化不同单元中所需的磁性并延伸到更高维的材料中。在这方面,已经采取了许多方法,包括优化晶体场以最大化单离子各向异性和促进磁性金属中心之间的强轨道交换相互作用。强调控制和多功能性,这项工作试图开发一个通用的战略,紧急复杂性,通过积木的方法,高度各向异性单元之间的磁偶极相互作用的基础上。初步工作已经确定,磁取向各向异性是一致的和可预见的强制执行的铒离子(Er 3+)时,绑定到一个环辛四烯二阴离子,留下其他配位体网站可用于建立连接。磁矩的可预测的大小和方向允许直观地设计通过空间的偶极相互作用路径。磁性构建单元的合成可及性和灵活性应允许严格控制分子结构,以修改、测试和描述跨对称性、角度和维度参数空间的这种相互作用,创造了波函数的势能,分子自旋动力学的设计方法。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值进行评估而被认为值得支持和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Rinehart其他文献

Jeffrey Rinehart的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Rinehart', 18)}}的其他基金

A Component-wise Model for Understanding Spin-Charge Interactions in Nanoparticle Solids Using Targeted Synthesis, Magnetometry, and Magnetoresistance
利用靶向合成、磁力测定和磁阻来理解纳米颗粒固体中自旋电荷相互作用的组件模型
  • 批准号:
    2322706
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
Scalable Magnetic Anisotropy from Molecular Lanthanide Building Units
分子镧系元素构建单元的可扩展磁各向异性
  • 批准号:
    1904937
  • 财政年份:
    2019
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant

相似海外基金

Creation of a new-principle inductor "magnonic inductor" by magnetic excitation of magnetic insulators
通过磁绝缘体磁激励创建新原理电感器“磁振子电感器”
  • 批准号:
    23K17882
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Excitation of Majorana fermion by RF electromagnetic wave absorption in 100 T magnetic fields
100 T 磁场中射频电磁波吸收激发马约拉纳费米子
  • 批准号:
    22KF0112
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
In Vivo 3T Magnetic Resonance Spectroscopy Measurements of Excitation and Inhibition in Humans
人体兴奋和抑制的体内 3T 磁共振波谱测量
  • 批准号:
    RGPIN-2017-03875
  • 财政年份:
    2022
  • 资助金额:
    $ 48万
  • 项目类别:
    Discovery Grants Program - Individual
Exploring The Topological Magnetic Excitation Spectrum Of S=half MOFs With Inelastic Neutron Scattering
利用非弹性中子散射探索 S=half MOF 的拓扑磁激发谱
  • 批准号:
    2910699
  • 财政年份:
    2021
  • 资助金额:
    $ 48万
  • 项目类别:
    Studentship
In Vivo 3T Magnetic Resonance Spectroscopy Measurements of Excitation and Inhibition in Humans
人体兴奋和抑制的体内 3T 磁共振波谱测量
  • 批准号:
    RGPIN-2017-03875
  • 财政年份:
    2021
  • 资助金额:
    $ 48万
  • 项目类别:
    Discovery Grants Program - Individual
In Vivo 3T Magnetic Resonance Spectroscopy Measurements of Excitation and Inhibition in Humans
人体兴奋和抑制的体内 3T 磁共振波谱测量
  • 批准号:
    RGPIN-2017-03875
  • 财政年份:
    2020
  • 资助金额:
    $ 48万
  • 项目类别:
    Discovery Grants Program - Individual
Construction of high-speed magnetic property evaluation system under inverter excitation for high-speed high-power density motor core
高速大功率密度电机铁芯逆变励磁高速磁性能评估系统构建
  • 批准号:
    20K04509
  • 财政年份:
    2020
  • 资助金额:
    $ 48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
In Vivo 3T Magnetic Resonance Spectroscopy Measurements of Excitation and Inhibition in Humans
人体兴奋和抑制的体内 3T 磁共振波谱测量
  • 批准号:
    RGPIN-2017-03875
  • 财政年份:
    2019
  • 资助金额:
    $ 48万
  • 项目类别:
    Discovery Grants Program - Individual
In Vivo 3T Magnetic Resonance Spectroscopy Measurements of Excitation and Inhibition in Humans
人体兴奋和抑制的体内 3T 磁共振波谱测量
  • 批准号:
    RGPIN-2017-03875
  • 财政年份:
    2018
  • 资助金额:
    $ 48万
  • 项目类别:
    Discovery Grants Program - Individual
In Vivo 3T Magnetic Resonance Spectroscopy Measurements of Excitation and Inhibition in Humans
人体兴奋和抑制的体内 3T 磁共振波谱测量
  • 批准号:
    RGPIN-2017-03875
  • 财政年份:
    2017
  • 资助金额:
    $ 48万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了