A Component-wise Model for Understanding Spin-Charge Interactions in Nanoparticle Solids Using Targeted Synthesis, Magnetometry, and Magnetoresistance
利用靶向合成、磁力测定和磁阻来理解纳米颗粒固体中自旋电荷相互作用的组件模型
基本信息
- 批准号:2322706
- 负责人:
- 金额:$ 63.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
PART 1: NON-TECHNICAL SUMMARYAt the heart of much of modern technology and materials science lies the challenge of understanding and controlling the interaction between an electron’s charge and its spin. This project, which is supported by the Solid State and Materials Chemistry program in NSF’s Division of Materials Research, targets that challenge by focusing on a phenomenon known as magnetoresistance (MR). For a magnetoresistant material, a magnetic field can be used to change the material’s electrical resistance. Unlike traditional MR devices that employ intricate layered structures as the active MR material, this project embraces a unique, simpler, and highly adaptable approach, namely leveraging advances in low-cost, high-purity magnetic nanoparticle synthesis and assemble them into MR-active hybrid composites. This method promises to be more fault-tolerant and tunable, enabling researchers to develop, test, and refine theories of MR and spin transport at an unprecedented pace. Furthermore, this project enhances the impact of its research through a commitment to transparency and accessibility in data management. In an era where data fuels discovery, the team will focus on data analysis and software development embedded in FAIR principles, building a culture of “open-source” research that is genuinely Findable, Accessible, Interoperable, and Reusable to the public funders who make the research possible.PART 2: TECHNICAL SUMMARYThe research, which is supported by the Solid State and Materials Chemistry program in NSF’s Division of Materials Research, explores a nanoscale bottom-up approach to one of the most technologically important methods of electronic spin-charge interaction: magnetoresistance (MR). Instead of the traditional layered MR materials, the research team of Professor Jeffrey Rinehart at UC San Diego focuses on granular MR materials composed of nanoparticles synthesized with specific composition and magnetic phase requirements. By leveraging advancements in colloidal nanochemistry, unparalleled control over the magnetic structure of individual particles is obtained and thoroughly characterized, thereby allowing rigorous correlation with the MR behavior of composite material structures. This is the first time that researchers establish quantitative structure-function relationships between well-defined parameters: interparticle interaction strength, single-particle magnetic anisotropy, and particle volume. Elucidating these key factors influencing the MR behavior of the system allows mapping out the full landscape of MR response as multidimensional response function, providing a far more comprehensive characterization than has previously been attempted. Starting from the simple but important ferrite-based systems, research expands to high-performing magnetic materials with an ultimate goal of creating MR systems with adjustable field sensitivity and pseudo-spin valve behavior for a variety of sensing applications. The research includes an extensive data organization and modeling component with an emphasis on alignment with FAIR data principles and making data widely available for study.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第1部分:非技术总结现代技术和材料科学的核心是理解和控制电子电荷与其旋转之间相互作用的挑战。该项目得到了NSF材料研究部的固态和材料化学计划的支持,该项目通过着重于一种称为磁持敏度(MR)的现象来挑战。对于磁化材料,可以使用磁场来改变材料的电阻。与使用复杂的分层结构作为活性MR材料的传统MR设备不同,该项目具有独特,更简单且高度适应性的方法,即利用低成本,高纯度磁性纳米粒子合成的进步并将其组装成MR活性混合组成。这种方法有望更容易耐断层和可调,使研究人员能够在前所未有的空间中发展,测试和完善MR和自旋运输的理论。此外,该项目通过致力于数据管理中的透明度和可访问性来增强其研究的影响。 In an era where data fuels discovery, the team will focus on data analysis and software development embedded in FAIR principles, building a culture of “open-source” research that is genuinely Findable, Accessible, Interoperable, and Reusable to the public funds who make the research possible.PART 2: TECHNICAL SUMMARYThe research, which is supported by the Solid State and Materials Chemistry program in NSF’s Division of Materials Research, explores a nanoscale bottom-up approach to one of the电子自旋荷兰相互作用的最重要技术上重要的方法:磁阻(MR)。加州大学圣地亚哥分校的Jeffrey Rinehart教授的研究团队不是传统的分层MR材料,重点是由纳米颗粒组成的颗粒状MR材料,该材料由纳米颗粒组成,这些纳米颗粒与特定组成和磁相要求合成。通过利用胶体纳米化学的进步,可以获得对单个颗粒磁结构的无与伦比的控制,并彻底表征,从而允许与复合材料结构的MR行为进行严格的相关性。这是研究人员第一次在定义明确的参数之间建立定量结构功能关系:颗粒间相互作用强度,单粒子磁各向异性和粒子体积。阐明这些关键因素会影响系统的MR行为,允许将MR响应的完整景观描绘为多维响应函数,提供了比以前尝试过的更全面的特征。从简单但重要的基于铁氧体的系统开始,研究将扩展到高性能的磁性材料,其最终目标是创建具有可调场灵敏度和伪旋转阀行为的MR系统,以用于各种灵敏度应用。这项研究包括广泛的数据组织和建模组件,重点是与公平数据原则保持一致,并使数据广泛可用于研究。该奖项反映了NSF的法定任务,并通过评估该基金会的知识分子优点和更广泛的影响来审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Rinehart其他文献
Jeffrey Rinehart的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Rinehart', 18)}}的其他基金
Controlling Magnetic Excitation Pathways via Molecular Design of Anisotropic Dipolar Spin Arrays
通过各向异性偶极自旋阵列的分子设计控制磁激发路径
- 批准号:
2154830 - 财政年份:2022
- 资助金额:
$ 63.17万 - 项目类别:
Standard Grant
Scalable Magnetic Anisotropy from Molecular Lanthanide Building Units
分子镧系元素构建单元的可扩展磁各向异性
- 批准号:
1904937 - 财政年份:2019
- 资助金额:
$ 63.17万 - 项目类别:
Standard Grant
相似国自然基金
基于piece-wise方法的横风横浪中破损船舶瘫船稳性及其倾覆机理研究
- 批准号:51509124
- 批准年份:2015
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
通过WISE巡天和MPA-JHU源表估算星系的恒星质量
- 批准号:11563005
- 批准年份:2015
- 资助金额:47.0 万元
- 项目类别:地区科学基金项目
用WISE红外卫星数据研究贫金属恒星形成星系性质
- 批准号:11203001
- 批准年份:2012
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
创造发明的方法研究及创造发明智能激励启发系统的研制
- 批准号:59175189
- 批准年份:1991
- 资助金额:4.0 万元
- 项目类别:面上项目
相似海外基金
Development of effective delamination analysis model for steel and concrete structures reinforced with composite materials
复合材料加固钢结构和混凝土结构有效分层分析模型的开发
- 批准号:
19K04586 - 财政年份:2019
- 资助金额:
$ 63.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Wise Funding Practice: Exploring Indigenous funding criteria with a CBR team
明智的资助实践:与 CBR 团队一起探索本土资助标准
- 批准号:
324607 - 财政年份:2014
- 资助金额:
$ 63.17万 - 项目类别:
Operating Grants
An International Comparative Study for the Construction of Work Integration Social Enterprise Model in Japan
日本工作一体化社会企业模式构建的国际比较研究
- 批准号:
23730366 - 财政年份:2011
- 资助金额:
$ 63.17万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Theoretical and Empirical Investigation into the Consumption Capital Asset Pricing Model
消费资本资产定价模型的理论与实证研究
- 批准号:
15330063 - 财政年份:2003
- 资助金额:
$ 63.17万 - 项目类别:
Grant-in-Aid for Scientific Research (B)