D3SC: Mining for mechanistic information to predict protein function
D3SC:挖掘机制信息来预测蛋白质功能
基本信息
- 批准号:1905214
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project Title: D3SC: Mining for Mechanistic Information to Predict Protein FunctionProteins perform a variety of essential functions in a cell, including catalyzing chemical reactions as enzymes. With this award, the Chemistry of Life Processes Program in the Chemistry Division is funding Dr. Mary Jo Ondrechen, Dr. Penny Beuning and Dr. Deniz Erdogomus at Northeastern University to develop new ways to predict the function of a protein from its three-dimensional structure. This computational problem is a major challenge in genomics - the study of DNA sequences and their protein products. Research in genomics is opening the door to tremendous current and future innovations to benefit society, in areas as diverse as food production, energy, the economy, the environment, and health. In this project, chemical properties are computed and coupled with machine learning algorithms to identify the specific biochemical roles for the active amino acids in a protein structure, which then leads to the prediction of the protein's function. These predictions of function are tested experimentally by direct biochemical assays and by ligand binding studies, for selected cases. Doctoral students and undergraduate research interns, including those from minority groups that are underrepresented in STEM fields, are being trained through this project to become highly qualified scientists in the areas of computational chemistry, informatics, machine learning, and biochemistry. These skills are vital to the regional high-tech economy of New England and to United States competitiveness in the global economy. The computational prediction of biochemical functional roles of individual amino acids in a protein structure is entirely new. The predictive power of properties obtained from computational chemistry are being enhanced by machine learning approaches, including Support Vector Machines (SVM) and Graph Convolutional Neural Networks (GCNN). Improved, experimentally tested methods for the prediction of protein function contribute significantly to the interpretation of the massive quantities of data from genome sequencing and Structural Genomics (SG) initiatives. A significant feature of this project is that it incorporates computed chemical properties of the amino acids in a protein structure into more conventional informatics methods to predict function, whereas most current methods are purely informatics-based approaches. This project is unique in that it employs computed chemical reactivity and electrostatic features on the atomic scale in the protein function prediction problem to obtain residue-specific mechanistic information. With the capability to match functional types across different structural folds, i.e. cases with neither sequence nor 3D structure similarity, the ability to assign biochemical function reliably is substantially increased for SG proteins of unknown or uncertain function. This work also leads to better understanding of how enzymes work and of how specific amino acid residues achieve their catalytic power.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Project Title: D3SC: Mining for Mechanistic Information to Predict Protein FunctionProteins perform a variety of essential functions in a cell, including catalyzing chemical reactions as enzymes. With this award, the Chemistry of Life Processes Program in the Chemistry Division is funding Dr. Mary Jo Ondrechen, Dr. Penny Beuning and Dr. Deniz Erdogomus at Northeastern University to develop new ways to predict the function of a protein from its three-dimensional structure. This computational problem is a major challenge in genomics - the study of DNA sequences and their protein products. Research in genomics is opening the door to tremendous current and future innovations to benefit society, in areas as diverse as food production, energy, the economy, the environment, and health. In this project, chemical properties are computed and coupled with machine learning algorithms to identify the specific biochemical roles for the active amino acids in a protein structure, which then leads to the prediction of the protein's function. These predictions of function are tested experimentally by direct biochemical assays and by ligand binding studies, for selected cases. Doctoral students and undergraduate research interns, including those from minority groups that are underrepresented in STEM fields, are being trained through this project to become highly qualified scientists in the areas of computational chemistry, informatics, machine learning, and biochemistry. These skills are vital to the regional high-tech economy of New England and to United States competitiveness in the global economy. The computational prediction of biochemical functional roles of individual amino acids in a protein structure is entirely new. The predictive power of properties obtained from computational chemistry are being enhanced by machine learning approaches, including Support Vector Machines (SVM) and Graph Convolutional Neural Networks (GCNN). Improved, experimentally tested methods for the prediction of protein function contribute significantly to the interpretation of the massive quantities of data from genome sequencing and Structural Genomics (SG) initiatives. A significant feature of this project is that it incorporates computed chemical properties of the amino acids in a protein structure into more conventional informatics methods to predict function, whereas most current methods are purely informatics-based approaches. This project is unique in that it employs computed chemical reactivity and electrostatic features on the atomic scale in the protein function prediction problem to obtain residue-specific mechanistic information. With the capability to match functional types across different structural folds, i.e. cases with neither sequence nor 3D structure similarity, the ability to assign biochemical function reliably is substantially increased for SG proteins of unknown or uncertain function. This work also leads to better understanding of how enzymes work and of how specific amino acid residues achieve their catalytic power.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stereoselective Synthesis of β-Glycinamide Ribonucleotide.
- DOI:10.3390/molecules27082528
- 发表时间:2022-04-14
- 期刊:
- 影响因子:4.6
- 作者:Ngu, Lisa;Ray, Debarpita;Watson, Samantha S.;Beuning, Penny J.;Ondrechen, Mary Jo;O'Doherty, George A.
- 通讯作者:O'Doherty, George A.
Probing remote residues important for catalysis in Escherichia coli ornithine transcarbamoylase
- DOI:10.1371/journal.pone.0228487
- 发表时间:2020-02-06
- 期刊:
- 影响因子:3.7
- 作者:Ngu, Lisa;Winters, Jenifer N.;Beuning, Penny J.
- 通讯作者:Beuning, Penny J.
Electrostatic fingerprints of catalytically active amino acids in enzymes
- DOI:10.1002/pro.4291
- 发表时间:2022-05-01
- 期刊:
- 影响因子:8
- 作者:Iyengar, Suhasini M.;Barnsley, Kelly K.;Ondrechen, Mary Jo
- 通讯作者:Ondrechen, Mary Jo
Identification and characterization of alternative sites and molecular probes for SARS-CoV-2 target proteins.
- DOI:10.3389/fchem.2022.1017394
- 发表时间:2022
- 期刊:
- 影响因子:5.5
- 作者:
- 通讯作者:
Hydration sphere structure of architectural molecules: polyethylene glycol and polyoxymethylene oligomers
建筑分子的水化球结构:聚乙二醇和聚甲醛低聚物
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:6
- 作者:A. M. Rozza;Danny E. P. Vanpoucke;Eva;J. Bouckaert;R. Blossey;M. Lensink;Mary Jo Ondrechen;I. Bakó;J. Oláh;Goedele Roos
- 通讯作者:Goedele Roos
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mary Jo Ondrechen其他文献
Distal Residues and Enzyme Activity: Implications for Personalized Medicine
- DOI:
10.1016/j.bpj.2019.11.2937 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Lisa Ngu;Jenifer N. Winters;Lee Makowski;Penny J. Beuning;Mary Jo Ondrechen - 通讯作者:
Mary Jo Ondrechen
Cartilage targeting cationic peptide carriers display deep cartilage penetration and retention in a rabbit model of post-traumatic osteoarthritis
在创伤后骨关节炎的兔模型中,靶向软骨的阳离子肽载体显示出对软骨的深度渗透和滞留。
- DOI:
10.1016/j.joca.2025.04.001 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:9.000
- 作者:
Timothy L. Boyer;Olivia Chao;Bill Hakim;Luke Childress;Quentin A. Meslier;Suhasini M. Iyengar;Mary Jo Ondrechen;Ryan M. Porter;Ambika G. Bajpayee - 通讯作者:
Ambika G. Bajpayee
Computed chemical properties for predicting protein function
- DOI:
10.1016/j.bpj.2021.11.2042 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Suhasini Iyengar;Lakindu Pathira Kankanamge;Penny Beuning;Mary Jo Ondrechen - 通讯作者:
Mary Jo Ondrechen
Machine learning for prediction of protein function and elucidation of enzyme function and control
- DOI:
10.1016/j.bpj.2023.11.2608 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Lakindu Pathira Kankanamge;Lydia A. Ruffner;Atif Shafique;Suhasini M. Iyengar;Kelly K. Barnsley;Penny Beuning;Mary Jo Ondrechen - 通讯作者:
Mary Jo Ondrechen
Potential energy surfaces for a mixed-valence dimer in an applied electric field
- DOI:
10.1007/bf01113540 - 发表时间:
1995-03-01 - 期刊:
- 影响因子:1.500
- 作者:
Leonel F. Murga;Mary Jo Ondrechen - 通讯作者:
Mary Jo Ondrechen
Mary Jo Ondrechen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mary Jo Ondrechen', 18)}}的其他基金
Role of Coupled Amino Acids in the Mechanisms of Enzyme Catalysis
偶联氨基酸在酶催化机制中的作用
- 批准号:
2147498 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
RAPID: Undergraduate Research in Modeling and Computation for Discovery of Molecular Probes for SARS-CoV-2 Proteins
RAPID:发现 SARS-CoV-2 蛋白分子探针的建模和计算本科生研究
- 批准号:
2031778 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
RAPID: D3SC: Identification of Chemical Probes and Inhibitors Targeting Novel Sites on SARS-CoV-2 Proteins for COVID-19 Intervention
RAPID:D3SC:针对 SARS-CoV-2 蛋白新位点的化学探针和抑制剂的鉴定,用于干预 COVID-19
- 批准号:
2030180 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Distal Residues in Enzyme Catalysis and Protein Design
酶催化和蛋白质设计中的远端残基
- 批准号:
1517290 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Chemical Signatures for the Discovery of Protein Function
用于发现蛋白质功能的化学特征
- 批准号:
1305655 - 财政年份:2013
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Understanding Extended Active Sites in Enzymes
了解酶中的扩展活性位点
- 批准号:
1158176 - 财政年份:2012
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Are Enzyme Active Sites Built in Multiple Layers?
酶活性位点是多层构建的吗?
- 批准号:
0843603 - 财政年份:2009
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Protein Structure-Based Prediction of Functional Information
基于蛋白质结构的功能信息预测
- 批准号:
0517292 - 财政年份:2005
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
THEMATICS: Development and Application of a New Computational Tool for Functional Genomics
主题:功能基因组学新计算工具的开发和应用
- 批准号:
0135303 - 财政年份:2002
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
POWRE: Enzyme-Substrate Interactions Mediated by Vitamin B6
POWRE:维生素 B6 介导的酶-底物相互作用
- 批准号:
0074574 - 财政年份:2000
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
基于Genome mining技术研究抑制表皮葡萄球菌生物膜形成的次级代谢产物
- 批准号:21242003
- 批准年份:2012
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
NeTS: Small: NSF-DST: Modernizing Underground Mining Operations with Millimeter-Wave Imaging and Networking
NeTS:小型:NSF-DST:利用毫米波成像和网络实现地下采矿作业现代化
- 批准号:
2342833 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Development of social attention indicators of emerging technologies and science policies with network analysis and text mining
利用网络分析和文本挖掘开发新兴技术和科学政策的社会关注指标
- 批准号:
24K16438 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
FightAMR: Novel global One Health surveillance approach to fight AMR using Artificial Intelligence and big data mining
FightAMR:利用人工智能和大数据挖掘对抗 AMR 的新型全球统一健康监测方法
- 批准号:
MR/Y034422/1 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Research Grant
ART: Mining the Rich Vein of Research in Montana
艺术:挖掘蒙大拿州研究的丰富脉络
- 批准号:
2331325 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Cooperative Agreement
DISES Investigating mercury biogeochemical cycling via mixed-methods in complex artisanal gold mining landscapes and implications for community health
DISES 通过混合方法研究复杂手工金矿景观中的汞生物地球化学循环及其对社区健康的影响
- 批准号:
2307870 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Toward carbon-neutral society: Development of a full-sustainable eco-friendly green mining process for gold recovery
迈向碳中和社会:开发完全可持续的环保绿色采矿工艺以回收黄金
- 批准号:
24K17540 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Generating green hydrogen from mining wastes
从采矿废物中产生绿色氢气
- 批准号:
IM240100202 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Mid-Career Industry Fellowships
Novel Hydrophobic Concrete for Durable and Resilient Mining Infrastructure
用于耐用且有弹性的采矿基础设施的新型疏水混凝土
- 批准号:
LP230100288 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Linkage Projects
SBIR Phase I: Electromagnetic-ablative PGM Refining for In-situ Asteroid Mining
SBIR 第一阶段:用于小行星原位采矿的电磁烧蚀铂族金属精炼
- 批准号:
2327078 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Temporal Graph Mining for Anomaly Detection
用于异常检测的时间图挖掘
- 批准号:
DP240101547 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Discovery Projects














{{item.name}}会员




