Understanding Extended Active Sites in Enzymes

了解酶中的扩展活性位点

基本信息

  • 批准号:
    1158176
  • 负责人:
  • 金额:
    $ 56.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-05-01 至 2016-04-30
  • 项目状态:
    已结题

项目摘要

A fundamental problem in biochemistry is to understand how enzymes work. This project seeks greater insight into how nature designs enzyme active sites, particularly the residues that are not in direct contact with the reacting substrate molecule(s). Structural and biochemical studies have now characterized the active sites of hundreds of enzymes, and nearly all of these studies have focused on the amino acids in direct contact with the reacting substrate; these residues may be regarded as the first layer of the active site. Recent theoretical predictions and experimental studies strongly suggest that residues outside the first layer of the active site can also be very important for catalysis. The goals of this project are to combine theory, computation, and experiment to establish the prevalence of spatially extended active sites in enzymes, to show that this phenomenon is predictable computationally, and to elucidate the mechanisms by which spatially remote residues participate in enzyme catalysis. One such mechanism, and a problem of intense current interest, is the role of protein dynamics in the catalytic process. The examples studied here have been chosen because they have different kinds of interesting dynamical processes in play. In DNA polymerase III, motions in the polymerase subunit modulate DNA binding and are likely responsible for checking the fidelity of base-pair formation. For ornithine transcarbamylase, an induced fit conformational change has been reported to occur with the binding of the first reactant molecule. For glycinamide ribonucleotide transformylase, a pH-dependent molecular switch has been proposed for a coil-to-helix transition that activates the catalytic site. Preliminary evidence suggests that residues outside the first shell play central roles in each of these processes. For these three enzymes, mutations will be made at positions in the second and third shells that are predicted computationally to be important for catalysis, and these mutants will be characterized kinetically and structurally. Molecular dynamics (MD) simulations will be performed on the wild type and variants to determine whether the mutations affect the dynamics of the protein, and whether this motion contributes to catalysis, predictions that will be tested experimentally using wide-angle x-ray solution (WAXS) scattering. The establishment of principles governing remote residue participation in enzyme catalysis, and evidence that such participation is predictable computationally, will be very useful for enzyme engineering and mechanistic studies. The computational methods developed for this project will be made freely available to the scientific community via the web for use in research, including protein engineering and enzyme mechanism studies, and in commercial applications. This project will provide better understanding of nature's design of enzyme active sites and of how enzymes affect catalysis. Such improved understanding can help in the development of novel technologies, such as cleaner, "green" industrial processes, sustainable methods for environmental remediation, and enzymatic biofuel synthesis. The training of highly qualified scientists as described in this project is vital to the regional high-tech economy and to U.S. competitiveness in the global economy. Two doctoral students will be trained in computational methods, in protein expression, mutation, purification, kinetics and binding assays, crystal structure determination, and other x-ray scattering methods. Parts of the project will be integrated into the Molecular Modeling course, with active student participation in some of the computational and modeling work. Research participation by undergraduate students will continue. This project will continue current collaborations with faculty members at primarily undergraduate institutions (PUIs), including a Hispanic-serving PUI. Hands-on demonstrations of computational and other research tools will continue at PUIs and to inner city K-12 students. Extensive participation by project team members in Native American student, professional, and community groups will continue.
生物化学的一个基本问题是了解酶的工作原理。该项目寻求更深入地了解大自然如何设计酶活性位点,特别是不与反应底物分子直接接触的残基。结构和生化研究现已描述了数百种酶的活性位点,几乎所有这些研究都集中在与反应底物直接接触的氨基酸上。这些残基可以被视为活性位点的第一层。最近的理论预测和实验研究强烈表明,活性位点第一层之外的残基对于催化也非常重要。该项目的目标是将理论、计算和实验结合起来,以确定酶中空间延伸的活性位点的普遍性,证明这种现象是可以通过计算预测的,并阐明空间遥远的残基参与酶催化的机制。其中一种机制,也是当前人们强烈关注的一个问题,是蛋白质动力学在催化过程中的作用。选择这里研究的例子是因为它们具有不同类型的有趣的动态过程。在 DNA 聚合酶 III 中,聚合酶亚基的运动调节 DNA 结合,并可能负责检查碱基对形成的保真度。对于鸟氨酸转氨甲酰酶,据报道随着第一个反应物分子的结合而发生诱导的拟合构象变化。对于甘氨酰胺核糖核苷酸转化酶,已经提出了一种 pH 依赖性分子开关,用于激活催化位点的卷曲到螺旋转变。初步证据表明,第一壳外的残基在每个过程中都发挥着核心作用。对于这三种酶,将在第二个和第三个壳中的位置进行突变,这些位置经计算预测对催化很重要,并且这些突变体将在动力学和结构上进行表征。将对野生型和变体进行分子动力学 (MD) 模拟,以确定突变是否影响蛋白质的动力学,以及这种运动是否有助于催化,预测将使用广角 X 射线溶液 (WAXS) 散射进行实验测试。建立控制酶催化中远程残基参与的原则,并证明这种参与是可通过计算预测的,对于酶工程和机理研究将非常有用。为该项目开发的计算方法将通过网络免费提供给科学界,用于研究(包括蛋白质工程和酶机制研究)以及商业应用。该项目将帮助人们更好地了解酶活性位点的自然设计以及酶如何影响催化作用。这种加深的理解有助于开发新技术,例如更清洁的“绿色”工业流程、环境修复的可持续方法以及酶促生物燃料合成。该项目中描述的高素质科学家的培训对于地区高科技经济和美国在全球经济中的竞争力至关重要。两名博士生将接受计算方法、蛋白质表达、突变、纯化、动力学和结合测定、晶体结构测定以及其他 X 射线散射方法的培训。该项目的部分内容将整合到分子建模课程中,学生积极参与一些计算和建模工作。本科生的研究参与将继续。 该项目将继续与主要本科院校 (PUI) 的教职人员(包括为西班牙裔服务的 PUI)目前的合作。计算和其他研究工具的实践演示将继续在 PUI 和市中心的 K-12 学生中进行。 Extensive participation by project team members in Native American student, professional, and community groups will continue.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mary Jo Ondrechen其他文献

Distal Residues and Enzyme Activity: Implications for Personalized Medicine
  • DOI:
    10.1016/j.bpj.2019.11.2937
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Lisa Ngu;Jenifer N. Winters;Lee Makowski;Penny J. Beuning;Mary Jo Ondrechen
  • 通讯作者:
    Mary Jo Ondrechen
Cartilage targeting cationic peptide carriers display deep cartilage penetration and retention in a rabbit model of post-traumatic osteoarthritis
在创伤后骨关节炎的兔模型中,靶向软骨的阳离子肽载体显示出对软骨的深度渗透和滞留。
  • DOI:
    10.1016/j.joca.2025.04.001
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    9.000
  • 作者:
    Timothy L. Boyer;Olivia Chao;Bill Hakim;Luke Childress;Quentin A. Meslier;Suhasini M. Iyengar;Mary Jo Ondrechen;Ryan M. Porter;Ambika G. Bajpayee
  • 通讯作者:
    Ambika G. Bajpayee
Computed chemical properties for predicting protein function
  • DOI:
    10.1016/j.bpj.2021.11.2042
  • 发表时间:
    2022-02-11
  • 期刊:
  • 影响因子:
  • 作者:
    Suhasini Iyengar;Lakindu Pathira Kankanamge;Penny Beuning;Mary Jo Ondrechen
  • 通讯作者:
    Mary Jo Ondrechen
Machine learning for prediction of protein function and elucidation of enzyme function and control
  • DOI:
    10.1016/j.bpj.2023.11.2608
  • 发表时间:
    2024-02-08
  • 期刊:
  • 影响因子:
  • 作者:
    Lakindu Pathira Kankanamge;Lydia A. Ruffner;Atif Shafique;Suhasini M. Iyengar;Kelly K. Barnsley;Penny Beuning;Mary Jo Ondrechen
  • 通讯作者:
    Mary Jo Ondrechen
Potential energy surfaces for a mixed-valence dimer in an applied electric field
  • DOI:
    10.1007/bf01113540
  • 发表时间:
    1995-03-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Leonel F. Murga;Mary Jo Ondrechen
  • 通讯作者:
    Mary Jo Ondrechen

Mary Jo Ondrechen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mary Jo Ondrechen', 18)}}的其他基金

Role of Coupled Amino Acids in the Mechanisms of Enzyme Catalysis
偶联氨基酸在酶催化机制中的作用
  • 批准号:
    2147498
  • 财政年份:
    2022
  • 资助金额:
    $ 56.54万
  • 项目类别:
    Standard Grant
RAPID: Undergraduate Research in Modeling and Computation for Discovery of Molecular Probes for SARS-CoV-2 Proteins
RAPID:发现 SARS-CoV-2 蛋白分子探针的建模和计算本科生研究
  • 批准号:
    2031778
  • 财政年份:
    2020
  • 资助金额:
    $ 56.54万
  • 项目类别:
    Standard Grant
RAPID: D3SC: Identification of Chemical Probes and Inhibitors Targeting Novel Sites on SARS-CoV-2 Proteins for COVID-19 Intervention
RAPID:D3SC:针对 SARS-CoV-2 蛋白新位点的化学探针和抑制剂的鉴定,用于干预 COVID-19
  • 批准号:
    2030180
  • 财政年份:
    2020
  • 资助金额:
    $ 56.54万
  • 项目类别:
    Standard Grant
D3SC: Mining for mechanistic information to predict protein function
D3SC:挖掘机制信息来预测蛋白质功能
  • 批准号:
    1905214
  • 财政年份:
    2019
  • 资助金额:
    $ 56.54万
  • 项目类别:
    Standard Grant
Distal Residues in Enzyme Catalysis and Protein Design
酶催化和蛋白质设计中的远端残基
  • 批准号:
    1517290
  • 财政年份:
    2015
  • 资助金额:
    $ 56.54万
  • 项目类别:
    Standard Grant
Chemical Signatures for the Discovery of Protein Function
用于发现蛋白质功能的化学特征
  • 批准号:
    1305655
  • 财政年份:
    2013
  • 资助金额:
    $ 56.54万
  • 项目类别:
    Standard Grant
Are Enzyme Active Sites Built in Multiple Layers?
酶活性位点是多层构建的吗?
  • 批准号:
    0843603
  • 财政年份:
    2009
  • 资助金额:
    $ 56.54万
  • 项目类别:
    Standard Grant
Protein Structure-Based Prediction of Functional Information
基于蛋白质结构的功能信息预测
  • 批准号:
    0517292
  • 财政年份:
    2005
  • 资助金额:
    $ 56.54万
  • 项目类别:
    Continuing Grant
THEMATICS: Development and Application of a New Computational Tool for Functional Genomics
主题:功能基因组学新计算工具的开发和应用
  • 批准号:
    0135303
  • 财政年份:
    2002
  • 资助金额:
    $ 56.54万
  • 项目类别:
    Standard Grant
POWRE: Enzyme-Substrate Interactions Mediated by Vitamin B6
POWRE:维生素 B6 介导的酶-底物相互作用
  • 批准号:
    0074574
  • 财政年份:
    2000
  • 资助金额:
    $ 56.54万
  • 项目类别:
    Standard Grant

相似国自然基金

Extended Synaptotagmins在内质网与细胞质膜互作中的机制研究
  • 批准号:
    91854117
  • 批准年份:
    2018
  • 资助金额:
    92.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

RUI: Experimental Studies of Active Mixing in Extended Fluid Systems
RUI:扩展流体系统中主动混合的实验研究
  • 批准号:
    2302708
  • 财政年份:
    2023
  • 资助金额:
    $ 56.54万
  • 项目类别:
    Standard Grant
Extended life and in-service performance testing of CALMFLOOR® active mass dampers
CALMFLOOR® 主动质量阻尼器的延长寿命和使用中性能测试
  • 批准号:
    10025591
  • 财政年份:
    2022
  • 资助金额:
    $ 56.54万
  • 项目类别:
    Collaborative R&D
Supporting Active Learning in Introductory STEM Courses with Extended Reality
通过扩展现实支持 STEM 入门课程中的主动学习
  • 批准号:
    2126711
  • 财政年份:
    2021
  • 资助金额:
    $ 56.54万
  • 项目类别:
    Standard Grant
Supporting Active Learning in Introductory STEM Courses with Extended Reality
通过扩展现实支持 STEM 入门课程中的主动学习
  • 批准号:
    2126716
  • 财政年份:
    2021
  • 资助金额:
    $ 56.54万
  • 项目类别:
    Standard Grant
Supporting Active Learning in Introductory STEM Courses with Extended Reality
通过扩展现实支持 STEM 入门课程中的主动学习
  • 批准号:
    2126723
  • 财政年份:
    2021
  • 资助金额:
    $ 56.54万
  • 项目类别:
    Standard Grant
Photodynamically-active coatings for extended disinfection of high-touch surfaces to combat COVID-19
光动力活性涂层可对频繁接触的表面进行长期消毒,以对抗 COVID-19
  • 批准号:
    552688-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 56.54万
  • 项目类别:
    Alliance Grants
Active Random Hypersurface Models: Simultaneous Shape and Pose Tracking of Extended Objects in Noisy Point Clouds
主动随机超曲面模型:噪声点云中扩展对象的同时形状和姿态跟踪
  • 批准号:
    234520279
  • 财政年份:
    2013
  • 资助金额:
    $ 56.54万
  • 项目类别:
    Research Grants
Tautomerically Active Modules in Extended pi-Electron Systems
扩展π电子系统中的互变活性模块
  • 批准号:
    1057411
  • 财政年份:
    2011
  • 资助金额:
    $ 56.54万
  • 项目类别:
    Standard Grant
Extended Active Support Environment (EASE)
扩展主动支持环境 (EASE)
  • 批准号:
    971198
  • 财政年份:
    2011
  • 资助金额:
    $ 56.54万
  • 项目类别:
    Small Business Research Initiative
Extended star clusters ín quiescent, active, and interacting galaxies as probes for structure formation
扩展星团在静止、活跃和相互作用的星系中作为结构形成的探针
  • 批准号:
    172325168
  • 财政年份:
    2010
  • 资助金额:
    $ 56.54万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了