Moduli Spaces and Geometric Microlocal Analysis
模空间和几何微局域分析
基本信息
- 批准号:1905398
- 负责人:
- 金额:$ 12.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Metrics with singularities are important objects in differential geometry and arise naturally in algebraic geometry, mathematical physics, number theory, representation theory etc. The PI in particular studies constant curvature metrics with singularities, which naturally appear for instance in the degeneration of smooth metrics and geometric flows. These objects also have interesting applications in physics as they can be viewed as solitons in gauge theory, and are related to Higgs bundles and magnetic vortices. Such metrics solve partial differential equations, called curvature equations, where singularities can be viewed as boundary data. Recently there have been many developments in the interplay of analysis and geometry in this field, featuring new and surprising phenomena such as stratification and bubbling. The goal of the project is to develop new techniques that will help discover new features of such objects, and give insight into problems related to singular metrics, including singular uniformization, moduli spaces, and solutions of partial differential equations on manifolds with singular geometry. This project involves studying singular metrics using geometric microlocal analysis. The central idea is to introduce new objects, called compactifications or resolutions, to resolve the singularities. These resolutions will in turn suggest which analytic techniques need to be developed. The PI intends to use this method to study problems such as the moduli space construction of constant curvature conical metrics and its relation to vortices, hyperbolic metrics with cusps and asymptotic geometry of the compactified Riemann moduli space, and gauge-theoretic partial differential equations with singular metric background.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
具有奇点的度量是微分几何中的重要对象,在代数几何、数学物理、数论、表示论等学科中自然出现。PI特别研究具有奇点的常曲率度量,奇点自然出现在光滑度量和几何流的退化中。这些物体在物理学中也有有趣的应用,因为它们可以被视为规范理论中的孤子,并且与希格斯束和磁漩涡有关。这样的度量解偏微分方程,称为曲率方程,其中奇点可以被视为边界数据。近年来,在这一领域中,分析学和几何学的相互作用有了许多发展,出现了分层和冒泡等新的令人惊讶的现象。该项目的目标是开发新技术,以帮助发现这些对象的新特征,并深入了解与奇异度量相关的问题,包括奇异均匀化,模空间和奇异几何流形上的偏微分方程的解。该项目涉及使用几何微局部分析研究奇异度量。中心思想是引入新的对象,称为紧化或分辨率,来解决奇点。这些决议将反过来建议需要发展哪些分析技术。PI计划利用该方法研究常曲率圆锥度量的模空间构造及其与涡旋的关系、带尖的双曲度量与紧化黎曼模空间的渐近几何、具有奇异度量背景的规范理论偏微分方程等问题。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Conical metrics on Riemann surfaces, I: The compactified configuration space and regularity
- DOI:10.2140/gt.2020.24.309
- 发表时间:2017-10
- 期刊:
- 影响因子:0
- 作者:R. Mazzeo;Xuwen Zhu
- 通讯作者:R. Mazzeo;Xuwen Zhu
Rigidity of a family of spherical conical metrics
- DOI:
- 发表时间:2019-02
- 期刊:
- 影响因子:0
- 作者:Xuwen Zhu
- 通讯作者:Xuwen Zhu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xuwen Zhu其他文献
Erratum to: On Finite Mixture Modeling of Change-Point Processes
- DOI:
10.1007/s00357-021-09400-w - 发表时间:
2021-09-16 - 期刊:
- 影响因子:1.900
- 作者:
Xuwen Zhu;Yana Melnykov - 通讯作者:
Yana Melnykov
Finite mixture model of hidden Markov regression with covariate dependence
具有协变量依赖性的隐马尔可夫回归的有限混合模型
- DOI:
10.1002/sta4.469 - 发表时间:
2022 - 期刊:
- 影响因子:1.7
- 作者:
Shuchismita Sarkar;Xuwen Zhu - 通讯作者:
Xuwen Zhu
Study on the Overlap in Matrix-Variate Data with Applications in Discriminant Analysis
- DOI:
10.1007/s13171-025-00406-9 - 发表时间:
2025-07-28 - 期刊:
- 影响因子:0.500
- 作者:
Yingying Zhang;Volodymyr Melnykov;Xuwen Zhu - 通讯作者:
Xuwen Zhu
Matrix‐variate time series modelling with hidden Markov models
隐马尔可夫模型的矩阵变量时间序列建模
- DOI:
10.1002/sta4.409 - 发表时间:
2021 - 期刊:
- 影响因子:1.7
- 作者:
Abdullah Asilkalkan;Xuwen Zhu - 通讯作者:
Xuwen Zhu
Boundary behaviour of Weil-Petersson and fiber metrics for Riemann moduli spaces
Weil-Petersson 的边界行为和黎曼模空间的纤维度量
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
R. Melrose;Xuwen Zhu - 通讯作者:
Xuwen Zhu
Xuwen Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xuwen Zhu', 18)}}的其他基金
Moduli Spaces and Geometric Microlocal Analysis
模空间和几何微局域分析
- 批准号:
2041823 - 财政年份:2020
- 资助金额:
$ 12.61万 - 项目类别:
Continuing Grant
相似海外基金
Study of moduli spaces of vacua of supersymmetric gauge theories by geometric representation theory
用几何表示理论研究超对称规范理论真空模空间
- 批准号:
23K03067 - 财政年份:2023
- 资助金额:
$ 12.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Geometric representation theory and moduli spaces
会议:几何表示理论和模空间
- 批准号:
2328483 - 财政年份:2023
- 资助金额:
$ 12.61万 - 项目类别:
Standard Grant
Geometric representation theory and moduli spaces of bundles
几何表示理论和丛的模空间
- 批准号:
RGPIN-2016-05542 - 财政年份:2021
- 资助金额:
$ 12.61万 - 项目类别:
Discovery Grants Program - Individual
Complex geometric structures and their moduli on Lie groups and homogeneous spaces
李群和齐次空间上的复杂几何结构及其模
- 批准号:
21K03248 - 财政年份:2021
- 资助金额:
$ 12.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric representation theory and moduli spaces of bundles
几何表示理论和丛的模空间
- 批准号:
RGPIN-2016-05542 - 财政年份:2020
- 资助金额:
$ 12.61万 - 项目类别:
Discovery Grants Program - Individual
Moduli Spaces and Geometric Microlocal Analysis
模空间和几何微局域分析
- 批准号:
2041823 - 财政年份:2020
- 资助金额:
$ 12.61万 - 项目类别:
Continuing Grant
CAREER: Locally Homogeneous Geometric Manifolds and Their Moduli Spaces
职业:局部齐次几何流形及其模空间
- 批准号:
1945493 - 财政年份:2020
- 资助金额:
$ 12.61万 - 项目类别:
Continuing Grant
A Study of Moduli Spaces of Parabolic Connections and Geometric Langlands Correspondence
抛物线连接模空间与几何朗兰兹对应的研究
- 批准号:
19J10022 - 财政年份:2019
- 资助金额:
$ 12.61万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Geometric representation theory and moduli spaces of bundles
几何表示理论和丛的模空间
- 批准号:
RGPIN-2016-05542 - 财政年份:2019
- 资助金额:
$ 12.61万 - 项目类别:
Discovery Grants Program - Individual
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
- 批准号:
RGPIN-2014-05050 - 财政年份:2018
- 资助金额:
$ 12.61万 - 项目类别:
Discovery Grants Program - Individual