Convergent Materials Design: Pressure Tuning Superconductivity via Polymorphism Control
收敛材料设计:通过多晶型控制压力调节超导性
基本信息
- 批准号:1905411
- 负责人:
- 金额:$ 36.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PART 1: NON-TECHNICAL SUMMARYThe rational discovery of new superconductors, materials that conduct electricity without resistance, remains an unsolved materials challenge in chemistry and physics. Simply stated, even how to approach this problem is unknown. Yet achieving this goal has the potential to benefit society with cheaper and more efficient electrical distribution, improved cell towers, and enhanced medical imaging. The proposed work, supported by the Solid State and Materials Chemistry program in the Division of Materials Research, is centered on identifying appropriate design principles for superconductors through iterative materials-by-design. A combination of materials synthesis, pressure-dependent structural and physical property characterization, and computational modeling will be used to establish structure-property relationships. Understanding these relationships will in turn yield design principles allowing scientists to piece together new superconductors, enabling the next generation of technological benefits to society. Involvement of the local community, including electrical engineering students from Morgan State University, will further extend the impact by providing cross-fertilization of knowledge between the materials and electrical engineering fields, and the implementation of new classroom and hands-on modules on solid-state electronic materials will help train the next-generation workforce. PART 2: TECHNICAL SUMMARYThe PIs propose to establish novel structure-function relationships and design principles for new materials discovery in layered electronic materials, specifically aimed toward the superconducting state. To do so, a combination of materials synthesis, physical property and structural characterization measurements under pressure, chemical bonding models, and density functional theory (DFT) will be applied. Specific questions to be addressed include: 1) what is the connection between symmetry, polymorphism, and superconductivity?; and 2) how does dimensionality impact superconductivity? Using electronic structure calculations, the PIs have identified a class of lesser-known materials that will provide unprecedented insight into each of these questions: in the former by targeting concomitant changes in structural parameters, and in the latter by providing the first example of bilayer iron pnictides with flexible chemical motifs. These design principles, which are elucidated through pressure-dependent measurements and computation, will be applied iteratively to inform further design principles for improved materials at ambient pressure. In addition, the application of iterative materials-by-design to superconductivity will demonstrate how a problem for which definitive predictive theories do not exist can still be significantly enhanced by modern materials-by-design approaches. Involvement of the local community, including electrical engineering students from Morgan State University, will further extend the impact by providing cross-fertilization of knowledge between the materials and electrical engineering domains. The implementation of new classroom and hands-on modules on solid-state electronic materials will help train the next generation workforce, with the content freely and publicly available for use by others. This project is supported by the Solid State and Materials Chemistry program in the Division of Materials Research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第一部分: 新超导体的合理发现,即无电阻导电的材料,仍然是化学和物理学中尚未解决的材料挑战。简单地说,甚至如何解决这个问题也是未知的。 然而,实现这一目标有可能通过更便宜、更有效的配电、改进的蜂窝塔和增强的医学成像来造福社会。这项由材料研究部固态和材料化学项目支持的拟议工作,集中在通过迭代材料设计确定超导体的适当设计原则。材料合成,压力相关的结构和物理性能表征,以及计算建模的组合将用于建立结构-性能关系。 理解这些关系将反过来产生设计原则,使科学家能够拼凑新的超导体,使下一代技术造福社会。 包括摩根州立大学电气工程专业学生在内的当地社区的参与,将通过提供材料和电气工程领域之间的知识交叉,进一步扩大影响,并在固态电子材料上实施新的课堂和实践模块,将有助于培训下一代劳动力。第二部分: PI提出建立新的结构-功能关系和设计原则,用于分层电子材料中的新材料发现,特别是针对超导状态。为此,将应用材料合成,压力下的物理性质和结构表征测量,化学键合模型和密度泛函理论(DFT)的组合。 具体问题包括:1)对称性、多态性和超导性之间的联系是什么?2)维度如何影响超导性?使用电子结构计算,PI已经确定了一类鲜为人知的材料,这将为这些问题中的每一个提供前所未有的洞察力:在前者中,通过针对结构参数的伴随变化,在后者中,通过提供具有灵活化学图案的双层铁磷属元素化合物的第一个例子。这些设计原则,这是阐明通过压力相关的测量和计算,将迭代地应用,以通知进一步的设计原则,在环境压力下的改进材料。此外,迭代材料设计在超导性中的应用将证明,现代材料设计方法仍然可以显着增强一个不存在明确预测理论的问题。 当地社区的参与,包括摩根州立大学电气工程专业的学生,将通过提供材料和电气工程领域之间的知识交叉,进一步扩大影响。实施关于固态电子材料的新的课堂和实践模块将有助于培训下一代劳动力,其内容可免费公开供他人使用。 该项目由材料研究部的固态和材料化学项目支持。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dataset: ScSI: A new exfoliatable semiconductor
数据集:ScSI:一种新型可剥离半导体
- DOI:10.34863/3jft-j385
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ferrenti, Austin;Siegler, Maxime;Gao, Shiyuan;Ng, Nicholas;McQueen, Tyrel
- 通讯作者:McQueen, Tyrel
ScSI: A New Exfoliatable Semiconductor
ScSI:新型可剥离半导体
- DOI:10.1021/acs.chemmater.2c00318
- 发表时间:2022
- 期刊:
- 影响因子:8.6
- 作者:Ferrenti, Austin M.;Siegler, Maxime A.;Gao, Shiyuan;Ng, Nicholas;McQueen, Tyrel M.
- 通讯作者:McQueen, Tyrel M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tyrel McQueen其他文献
Tyrel McQueen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tyrel McQueen', 18)}}的其他基金
CAREER: From Emergence of Collective Electronic States to Materials by Design in Layered Chalcogenides
职业生涯:从集体电子态的出现到层状硫属化物设计材料
- 批准号:
1253562 - 财政年份:2013
- 资助金额:
$ 36.75万 - 项目类别:
Continuing Grant
相似国自然基金
Journal of Materials Science & Technology
- 批准号:51024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
- 批准号:
10097944 - 财政年份:2024
- 资助金额:
$ 36.75万 - 项目类别:
EU-Funded
Safe and Sustainable by Design framework for the next generation of Chemicals and Materials
下一代化学品和材料的安全和可持续设计框架
- 批准号:
10110559 - 财政年份:2024
- 资助金额:
$ 36.75万 - 项目类别:
EU-Funded
Reverse Design of Tuneable 4D Printed Materials for Soft Robotics
用于软体机器人的可调谐 4D 打印材料的逆向设计
- 批准号:
DE240100960 - 财政年份:2024
- 资助金额:
$ 36.75万 - 项目类别:
Discovery Early Career Researcher Award
Flexible metal-organic frameworks (MOFs) for hydrogen isotope separation: insights into smart recognition of gas molecules towards materials design
用于氢同位素分离的柔性金属有机框架(MOF):深入了解气体分子对材料设计的智能识别
- 批准号:
24K17650 - 财政年份:2024
- 资助金额:
$ 36.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Multiscale Reduced Order Modeling and Design to Elucidate the Microstructure-Property-Performance Relationship of Hybrid Composite Materials
职业:通过多尺度降阶建模和设计来阐明混合复合材料的微观结构-性能-性能关系
- 批准号:
2341000 - 财政年份:2024
- 资助金额:
$ 36.75万 - 项目类别:
Standard Grant
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334039 - 财政年份:2024
- 资助金额:
$ 36.75万 - 项目类别:
Continuing Grant
Deep Learning with Limited Data for Battery Materials Design
电池材料设计中数据有限的深度学习
- 批准号:
EP/Y000552/1 - 财政年份:2024
- 资助金额:
$ 36.75万 - 项目类别:
Research Grant
Integration of Advanced Experiments, Imaging and Computation for Synergistic Structure-Performance Design of Powders and Materials in Additive Manufac
先进实验、成像和计算的集成,用于增材制造中粉末和材料的协同结构-性能设计
- 批准号:
EP/Y036778/1 - 财政年份:2024
- 资助金额:
$ 36.75万 - 项目类别:
Research Grant
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334040 - 财政年份:2024
- 资助金额:
$ 36.75万 - 项目类别:
Continuing Grant
Dual Series Gate Configuration, Materials Design, and Mechanistic Modeling for Drift-Stabilized, Highly Sensitive Organic Electrochemical Transistor Biosensors
用于漂移稳定、高灵敏度有机电化学晶体管生物传感器的双串联栅极配置、材料设计和机械建模
- 批准号:
2402407 - 财政年份:2024
- 资助金额:
$ 36.75万 - 项目类别:
Standard Grant