Collaborative Research: Controlling Flow Separation via Traveling Wave Actuators

合作研究:通过行波执行器控制流动分离

基本信息

项目摘要

Flow separation over a wing or fan blade leads typically to a significant loss of lift, thrust, or power, an increase in drag, an increase in fuel consumption, etc. Consequently, flow separation over these surfaces should be prevented with design or controlled. To control flow separation in this project, the flow near the surface is energized through triggering instabilities by a new lightweight, energy-efficient actuator that generates traveling waves. The main goal of this project is to test the hypothesis that this actuation is more efficient than other means and to optimize the performance of this actuator by gaining an understanding of the key parameters that govern the interaction of the actuator with the flow. This project will create a series of educational videos and the engagement of a diverse group of undergraduate students through well-established programs at our institutions. The main hypothesis of this proposal is that traveling wave actuators perform better than other actuators that create standing waves because: 1) traveling waves also inject momentum (generate thrust), and 2) apart from frequency, an additional parameter (wavelength) can also be tuned to affect flow separation as demonstrated by the preliminary results. Numerical and experimental approaches will be used for flow on a typical airfoil (NACA0018). Large-eddy simulations (LES) with moving boundaries will provide possible traveling waves for the initial design of traveling wave actuators and elucidate the mechanisms of flow reattachment. The experiments in the wind tunnel will provide the data to validate the simulations and confirm the hypothesis by comparing the traveling against standing wave actuators. The team?s synergistic capabilities in generating traveling wave via piezoelectric actuators and the wind tunnel experiments as well as LES with moving boundaries and fluid-structure interaction uniquely position us to tackle this challenge and accomplish the tasks put forward in this proposal.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机翼或风扇叶片上的气流分离通常会导致升力、推力或功率的显著损失,阻力增加,燃料消耗增加等。因此,应通过设计或控制来防止这些表面上的气流分离。为了控制该项目中的流动分离,表面附近的流动通过一种新的轻质节能致动器产生行波来触发不稳定性。该项目的主要目标是测试的假设,这种驱动是更有效的比其他手段,并通过获得的关键参数,管理的相互作用的致动器与流的理解,以优化该致动器的性能。该项目将创建一系列教育视频,并通过我们机构的完善计划吸引不同群体的本科生参与。该提议的主要假设是行波致动器比产生驻波的其他致动器性能更好,因为:1)行波也注入动量(产生推力),以及2)除了频率之外,还可以调谐附加参数(波长)以影响流分离,如初步结果所示。数值和实验方法将用于典型翼型(NACA 0018)上的流动。大涡模拟(LES)与移动边界将提供可能的行波驱动器的初始设计和阐明流动再附着的机制。在风洞中的实验将提供数据来验证模拟,并通过比较行波和驻波致动器来证实假设。团队?该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanisms of Morphing Wall Flow Control by Traveling Waves over an Airfoil
  • DOI:
    10.2514/1.j062449
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Uchenna Emmanuel Ogunka;A. Akbarzadeh;I. Borazjani
  • 通讯作者:
    Uchenna Emmanuel Ogunka;A. Akbarzadeh;I. Borazjani
Effect of Reynolds Number on Traveling Wave Flow Control
  • DOI:
    10.2514/6.2023-2137
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Uchenna Emmanuel Ogunka;I. Borazjani
  • 通讯作者:
    Uchenna Emmanuel Ogunka;I. Borazjani
The Ground Effect in Anguilliform Swimming
  • DOI:
    10.3390/biomimetics5010009
  • 发表时间:
    2020-03-01
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Ogunka, Uchenna E.;Daghooghi, Mohsen;Borazjani, Iman
  • 通讯作者:
    Borazjani, Iman
FLOW CONTROL with TRAVELING-WAVE SURFACE MORPHING at POST-STALL ANGLES of ATTACK
在失速后攻角处通过行波表面变形进行流量控制
  • DOI:
    10.2514/6.2022-1948
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ogunka, Uchenna E.;Akbarzadeh, Amir;Borazjani, Iman
  • 通讯作者:
    Borazjani, Iman
Controlling Flow Separation on a Thick Airfoil Using Backward Traveling Waves
  • DOI:
    10.2514/1.j059428
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Akbarzadeh, A. M.;Borazjani, I.
  • 通讯作者:
    Borazjani, I.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Iman Borazjani其他文献

Re-scaling of a fractional step method for low Reynolds number flows and fluid-structure-interaction
用于低雷诺数流动和流固耦合的分数步方法的重新缩放
  • DOI:
    10.1016/j.jfluidstructs.2025.104331
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Utkarsh Mishra;Iman Borazjani
  • 通讯作者:
    Iman Borazjani
Large eddy simulations of supersonic flow over a cylinder using an immersed boundary method
使用浸入边界法对圆柱体上的超音速流进行大涡模拟
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Akbarzadeh;Iman Borazjani
  • 通讯作者:
    Iman Borazjani

Iman Borazjani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Iman Borazjani', 18)}}的其他基金

CDS&E: A Validated Hybrid Echo-CFD Framework for Patient-Specific Cardiac Assessment
CDS
  • 批准号:
    2152869
  • 财政年份:
    2023
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Standard Grant
BRITE Pivot: Quantum Computing and Machine Learning for Fluid-Structure Interaction Problems
BRITE Pivot:流固耦合问题的量子计算和机器学习
  • 批准号:
    2227496
  • 财政年份:
    2023
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Standard Grant
BRITE Pivot: Quantum Computing and Machine Learning for Fluid-Structure Interaction Problems
BRITE Pivot:流固耦合问题的量子计算和机器学习
  • 批准号:
    2309630
  • 财政年份:
    2023
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Standard Grant
CAREER: Fluid-Structure Interaction (FSI) in Biological Flows
职业:生物流中的流固耦合 (FSI)
  • 批准号:
    1829408
  • 财政年份:
    2018
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Standard Grant
CAREER: Fluid-Structure Interaction (FSI) in Biological Flows
职业:生物流中的流固耦合 (FSI)
  • 批准号:
    1453982
  • 财政年份:
    2015
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319848
  • 财政年份:
    2024
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319849
  • 财政年份:
    2024
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319850
  • 财政年份:
    2024
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319847
  • 财政年份:
    2024
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and controlling force generation by a centrin-based contractile system
合作研究:理解和控制基于中心蛋白的收缩系统产生的力
  • 批准号:
    2313727
  • 财政年份:
    2023
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding and controlling force generation by a centrin-based contractile system
合作研究:理解和控制基于中心蛋白的收缩系统产生的力
  • 批准号:
    2313726
  • 财政年份:
    2023
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Continuing Grant
Collaborative Research: Controlling the properties of oxide-encapsulated metals for interfacial catalysis
合作研究:控制氧化物封装金属的界面催化性能
  • 批准号:
    2311986
  • 财政年份:
    2023
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Standard Grant
Collaborative Research: Controlling Metal-Oxide Interface Chemistry for New C-H Activation Catalysts
合作研究:控制新型 C-H 活化催化剂的金属-氧化物界面化学
  • 批准号:
    2329470
  • 财政年份:
    2023
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Standard Grant
Collaborative Research: Probing and Controlling Exciton-Plasmon Interaction for Solar Hydrogen Generation
合作研究:探测和控制太阳能制氢的激子-等离子体激元相互作用
  • 批准号:
    2230729
  • 财政年份:
    2023
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding and controlling force generation by a centrin-based contractile system
合作研究:理解和控制基于中心蛋白的收缩系统产生的力
  • 批准号:
    2313723
  • 财政年份:
    2023
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了