Collaborative Research: Understanding and controlling force generation by a centrin-based contractile system

合作研究:理解和控制基于中心蛋白的收缩系统产生的力

基本信息

  • 批准号:
    2313726
  • 负责人:
  • 金额:
    $ 60.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

Force generation underlies many of the processes most associated with life: movement, growth, and reproduction. The ultrafast contraction of the ciliate Spirostomum ambiguum represents the most powerful biological force generation in nature. This extreme movement is thought to be driven by a contractile protein-based network known as myonemes, which is poorly understood. The project will combine experiments and computational modeling to elucidate the mechanism of myoneme contraction with a view toward revealing new principles of biological force generation. The findings will set the stage to engineer force-generating systems for synthetic cells, for example to control cell shape and movement. The team was established at a 2019 NSF Ideas Lab on building synthetic cells as part of the Rules of Life initiative. The Broader Impact of the work includes its intrinsic nature in revealing the mechanistic details of what may be the most powerful biologic motor known. Additional activities will include the multidisciplinary training of high school, undergraduate, graduate students, and post-doctoral scholars. A permanent exhibit on “Seeing Cells” at the Marine Biological Laboratory (MBL), where 1000+ scientists and members of the public visit each year, will also be expanded upon. A theme of the exhibit is that a given function in a cell can be accomplished through different mechanisms in different types of cells. The project will catalyze new discussions on this theme, the design of synthetic cells, and their possible impact on society, and ideas from these discussions will be incorporated into the exhibit and translated to an online format to reach a wide audience.Myoneme contraction is triggered by calcium, and myonemes are composed of centrin EF-hand proteins and Sfi1 scaffold proteins. In contrast to the well-studied ATP-driven actomyosin contractile system, little is known about how myonemes generate force. Studies at multiple scales will produce quantitative integrative models that explain how molecular conformational changes produce force in the whole organism. A key advance enabling the studies is the team’s reconstitution of calcium-induced contraction by filaments composed of only centrin and Sfi1 in vitro. The project will test the hypothesis that specific conformational changes of myoneme proteins at the molecular level are triggered by calcium to drive the ultrafast contraction at the millimeter scale in this organism. The aims are to 1) determine the factors that modulate assembly and force generation in vitro, 2) elucidate the structural bases of contraction at the molecular level, and 3) determine how the interplay of the myoneme network, calcium dynamics, microtubules, and their surroundings produce ultrafast contraction of the whole organism. In the long term, this work will enable novel understanding of an independent biological mechanism for ultrafast force generation, which can be harnessed to manipulate biological materials, both in vitro and in vivo.This project was co-funded by the Molecular Biophysics and the Systems and Synthetic Biology programs in the Division of Molecular and Cellular Biosciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
力的产生是许多与生命最相关的过程的基础:运动、生长和繁殖。纤毛虫Spirostomum ambiguum的超快收缩代表了自然界中最强大的生物力产生。这种极端的运动被认为是由一种称为肌丝的收缩性蛋白质网络驱动的,这种网络目前还知之甚少。该项目将结合联合收割机实验和计算建模来阐明肌丝收缩的机制,以期揭示生物力产生的新原理。这些发现将为合成细胞的力生成系统的工程设计奠定基础,例如控制细胞的形状和运动。该团队成立于2019年NSF Ideas Lab,致力于构建合成细胞,作为生命规则计划的一部分。这项工作的更广泛影响包括揭示可能是已知最强大的生物马达的机械细节的内在本质。 其他活动将包括高中,本科,研究生和博士后学者的多学科培训。 在海洋生物实验室(MBL)的“看见细胞”永久展览,每年有1000多名科学家和公众参观,也将扩大。展览的一个主题是,细胞中的给定功能可以通过不同类型细胞中的不同机制来实现。该项目将促进关于这一主题的新讨论,合成细胞的设计及其对社会的可能影响,这些讨论的想法将被纳入展览并翻译成在线形式,以吸引广泛的观众。肌丝收缩由钙引发,肌丝由中心蛋白EF-手蛋白和Sfi 1支架蛋白组成。与研究充分的ATP驱动的肌动球蛋白收缩系统相反,对肌丝如何产生力知之甚少。多尺度的研究将产生定量的综合模型,解释分子构象变化如何在整个生物体中产生力。使这些研究成为可能的一个关键进展是,该团队在体外通过仅由中心蛋白和Sfi 1组成的细丝重建了钙诱导的收缩。该项目将测试这样一种假设,即肌丝蛋白在分子水平上的特定构象变化是由钙触发的,以驱动这种生物体在毫米尺度上的超快收缩。目的是1)确定调节体外组装和力产生的因素,2)阐明分子水平上收缩的结构基础,3)确定肌丝网络,钙动力学,微管及其周围环境的相互作用如何产生整个生物体的超快收缩。从长远来看,这项工作将使人们对超快力产生的独立生物机制有新的理解,这种机制可以用来操纵生物材料,无论是在体外还是在体内。这个项目是共同的-该奖项由分子生物物理学和分子与细胞生物科学部的系统与合成生物学项目资助。该奖项反映了NSF的法定使命,并被认为值得支持通过使用基金会的知识价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fred Chang其他文献

Board Level Reliability of Thinner Stacking Chips Package with Through Silicon Via Interposer
具有硅通孔中介层的更薄堆叠芯片封装的板级可靠性
Cytoplasm Biophysical Properties Limit Cytoskeleton Dynamics In Vivo
  • DOI:
    10.1016/j.bpj.2020.11.2159
  • 发表时间:
    2021-02-12
  • 期刊:
  • 影响因子:
  • 作者:
    Arthur T. Molines;Joel Lemiere;Claire H. Edrington;Chieh-Ting Hsu;Ida E. Steinmark;Klaus Suhling;Gohta Goshima;Liam J. Holt;Gary Brouhard;Fred Chang
  • 通讯作者:
    Fred Chang
Yeasts make their mark
酵母留下了它们的印记
  • DOI:
    10.1038/ncb0403-294
  • 发表时间:
    2003-04-01
  • 期刊:
  • 影响因子:
    19.100
  • 作者:
    Fred Chang;Matthias Peter
  • 通讯作者:
    Matthias Peter
Effects of γ-Tubulin Complex Proteins on Microtubule Nucleation and Catastrophe in Fission Yeast
γ-微管蛋白复合蛋白对裂殖酵母微管成核和突变的影响
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sabina Zimmerman;Fred Chang
  • 通讯作者:
    Fred Chang
Nanorheology reveals intra- and inter-cellular heterogeneity in cytoplasm viscosity
  • DOI:
    10.1016/j.bpj.2021.11.2091
  • 发表时间:
    2022-02-11
  • 期刊:
  • 影响因子:
  • 作者:
    Arthur T. Molines;Rikki M. Garner;Fred Chang;Julie Theriot
  • 通讯作者:
    Julie Theriot

Fred Chang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fred Chang', 18)}}的其他基金

Collaborative Research: Regulation of Nuclear Size
合作研究:核尺寸的调节
  • 批准号:
    2213582
  • 财政年份:
    2022
  • 资助金额:
    $ 60.58万
  • 项目类别:
    Standard Grant
Collaborative Research: CYBORG cells: Modular integration of synthetic organelles into living cells
合作研究:CYBORG 细胞:将合成细胞器模块化整合到活细胞中
  • 批准号:
    1935261
  • 财政年份:
    2019
  • 资助金额:
    $ 60.58万
  • 项目类别:
    Standard Grant
Collaborative Research: BIOMAPS Control of Spindle Positioning and Cytokinesis
合作研究:BIOMAPS 控制纺锤体定位和细胞分裂
  • 批准号:
    1638191
  • 财政年份:
    2016
  • 资助金额:
    $ 60.58万
  • 项目类别:
    Continuing Grant
Bilateral BBSRC-NSF/ BIO Regulation of Cell Size in Fission Yeast
裂殖酵母细胞大小的双边 BBSRC-NSF/BIO 调节
  • 批准号:
    1638195
  • 财政年份:
    2016
  • 资助金额:
    $ 60.58万
  • 项目类别:
    Continuing Grant
Bilateral BBSRC-NSF/ BIO Regulation of Cell Size in Fission Yeast
裂殖酵母细胞大小的双边 BBSRC-NSF/BIO 调节
  • 批准号:
    1548264
  • 财政年份:
    2015
  • 资助金额:
    $ 60.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: BIOMAPS Control of Spindle Positioning and Cytokinesis
合作研究:BIOMAPS 控制纺锤体定位和细胞分裂
  • 批准号:
    1244441
  • 财政年份:
    2013
  • 资助金额:
    $ 60.58万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 60.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
  • 批准号:
    2318940
  • 财政年份:
    2024
  • 资助金额:
    $ 60.58万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 60.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
  • 批准号:
    2331729
  • 财政年份:
    2024
  • 资助金额:
    $ 60.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342025
  • 财政年份:
    2024
  • 资助金额:
    $ 60.58万
  • 项目类别:
    Standard Grant
Collaborative Research: Design: Strengthening Inclusion by Change in Building Equity, Diversity and Understanding (SICBEDU) in Integrative Biology
合作研究:设计:通过改变综合生物学中的公平、多样性和理解(SICBEDU)来加强包容性
  • 批准号:
    2335235
  • 财政年份:
    2024
  • 资助金额:
    $ 60.58万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    $ 60.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
  • 批准号:
    2325464
  • 财政年份:
    2024
  • 资助金额:
    $ 60.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
  • 批准号:
    2346230
  • 财政年份:
    2024
  • 资助金额:
    $ 60.58万
  • 项目类别:
    Standard Grant
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
  • 批准号:
    2314272
  • 财政年份:
    2024
  • 资助金额:
    $ 60.58万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了