Compositional Dependence of Deformation Mechanisms in Concentrated FCC Solid Solutions

浓 FCC 固溶体中变形机制的成分依赖性

基本信息

  • 批准号:
    1905748
  • 负责人:
  • 金额:
    $ 53.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Non-Technical SummaryDuring the past millennia, humans have learned how to make strong materials by mixing more than one metal, i.e alloying. The traditional method has involved adding small amounts of alloying elements to a base metal. This process led to creation of the most famous metal alloy, steel, which is responsible for the industrial revolution and consequently a giant leap forward in technological advances of the human civilization. Despite great progress in making advanced steels as well as other types of more modern alloys, such as Ni base alloys for high temperature applications and Al and Mg alloys for light weighting, there still remain numerous fundamental questions regarding the underlying mechanisms through which these materials respond to loading. The answer to this question is the most important consideration when designing load bearing structures, from buildings and bridges to cars and airplanes. Moreover, with the modern technological advances, there is an urgent need to design new materials, capable of enduring complicated and often contradictory conditions, such as strength, formability and exposure to extreme situations such as high temperature or corrosive environments. On the other hand, recent progress in metallurgy has opened up the possibility of creating multicomponent metal alloys with much more complex compositions than conventional alloys. This program seeks to establish a rigorous relationship between alloy composition, the way it is processed, and how it responds to loading, thereby providing a physics-based predictive path to design new alloys for tailored structural properties. The program combines advanced modeling and experimental approaches. Interesting compositions for study will be identified using cutting-edge computational techniques. Experiments are designed to create predicted alloy compositions using efficient methods to rapidly explore a wide range of compositions, and characterization of internal material defects induced during deformation. In addition, this program will provide an opportunity to engage and train a diverse population of students from high school, to undergraduate and graduate levels, through hands on projects utilizing state of the art experimental and computational techniques to contribute towards educating the next generation of STEM workforce.Technical SummaryNovel, high-throughput computations and experiments are proposed over a wide range of compositions to test the hypothesis that deformation mechanisms and consequent properties in multicomponent fcc-based alloys can be favorably tuned by composition. This proposal seeks to develop a comprehensive understanding of deformation mechanisms in a wide range of fcc solid solutions, including deviation from equiatomic compositions, and specifically to explore compositions for which twinning and hcp martensite effects may contribute to extraordinary strain hardening and ultimate strength potential. Thus, the research objectives are to: (1) employ novel and efficient computational and combinatorial experimental approaches for creating desirable alloys; (2) understand the effect of stacking fault energy and relative fcc/hcp stability on the competing deformation mechanisms; (3) determine the evolution of deformation substructure with strain and the connection to remarkable strain hardening; and (4) characterize and model the deformation mechanisms operative at elevated temperature in association with anomalous hardening and dynamic strain aging. An integrated computational/experimental framework will be applied to a broad range of CrCoNi ternary alloys, and to alloys beyond this ternary system, in order to make a direct, quantitative connection between the chemistry of fcc-based solid solutions, and active deformation mechanisms and mechanical behavior. A new Monte Carlo method based on density functional theory (DFT) recently developed by PI Ghazisaeidi will be employed to predict phase stability and segregation behavior. Guided by these computations, PI Mills will conduct high-throughput experiments in order to reveal the complex relationships between composition, stacking fault energy, phase stability, and deformation mechanisms. This proposal will challenge present measurements in low stacking fault energy alloys through in situ mechanical experiments which will enable improved correlation between experiment and DFT calculation. Directly linking composition to phase stability and deformation mechanisms is necessary, as evidenced by the fact that TWIP steels with similar or lower stacking fault energies (when compared with CrCoNi) do not exhibit deformation-induced martensite (as does CrCoNi). Study of these complex composition effects will be extended to higher temperatures where evidence for strong solute interaction is observed in mechanical response, such as anomalous hardening and serrated flow, but the chemical species and deformation mechanisms associated with these interactions have yet to be identified. The proposed research will be extensible to other multicomponent alloys, including many important commercial alloys such as IN825, MP35, and Alloy 28 that share compositional commonality with the recently emerging fcc-based high entropy alloys, but presently lack detailed deformation mechanism understanding.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的几千年里,人类已经学会了如何通过混合一种以上的金属来制造坚固的材料,即合金。传统的方法是在基体金属中加入少量的合金元素。这一过程导致了最著名的金属合金钢的诞生,钢是工业革命的罪魁祸首,也是人类文明技术进步的巨大飞跃。尽管在制造高级钢以及其他类型的更现代的合金(例如用于高温应用的Ni基合金和用于轻量化的Al和Mg合金)方面取得了很大进展,但是仍然存在关于这些材料响应于载荷的基本机制的许多基本问题。这个问题的答案是设计承重结构时最重要的考虑因素,从建筑物和桥梁到汽车和飞机。此外,随着现代技术的进步,迫切需要设计能够承受复杂且通常矛盾的条件的新材料,例如强度、可成形性和暴露于极端情况(例如高温或腐蚀性环境)。另一方面,冶金学的最新进展已经开辟了制造具有比传统合金复杂得多的组成的多组分金属合金的可能性。该计划旨在建立合金成分之间的严格关系,它的处理方式,以及它如何响应负载,从而提供一个基于物理的预测路径,设计新的合金定制的结构性能。该计划结合了先进的建模和实验方法。有趣的组成研究将确定使用尖端的计算技术。 实验旨在使用有效的方法创建预测的合金成分,以快速探索各种成分,并表征变形过程中诱导的内部材料缺陷。此外,该计划将提供一个机会,通过利用最先进的实验和计算技术的项目,为教育下一代STEM劳动力做出贡献,参与和培训从高中到本科和研究生水平的多样化学生群体。高通量的计算和实验提出了在广泛的组成范围内,以测试多组分fcc中的变形机制和随后的性质的假设,基合金可以有利地通过组成来调整。该提案旨在全面了解面心立方固溶体中的变形机制,包括偏离等原子组成,特别是探索孪晶和六方马氏体效应可能有助于非凡应变硬化和极限强度潜力的组合物。 因此,本研究的目标是:(1)采用新的和有效的计算和组合实验方法来创造理想的合金;(2)理解堆垛层错能和相对fcc/hcp稳定性对竞争变形机制的影响;(3)确定变形亚结构随应变的演变以及与显着应变硬化的关系;以及(4)表征并模拟高温下与异常硬化和动态应变时效相关的变形机制。 一个集成的计算/实验框架将被应用到广泛的CrCoNi三元合金,并超出此三元系的合金,以使fcc基固溶体的化学之间的直接,定量的连接,和主动变形机制和机械行为。一个新的Monte Carlo方法的基础上密度泛函理论(DFT)最近开发的PI Ghazisaeidi将用于预测相稳定性和偏析行为。 在这些计算的指导下,PI米尔斯将进行高通量实验,以揭示成分,堆垛层错能,相稳定性和变形机制之间的复杂关系。 这一建议将挑战目前的测量低堆垛层错能合金通过原位力学实验,这将使实验和DFT计算之间的相关性得到改善。 将成分与相稳定性和变形机制直接联系起来是必要的,这一事实证明,具有类似或更低堆垛层错能的TvS钢(与CrCoNi相比)不会表现出变形诱发马氏体(CrCoNi也是如此)。 这些复杂的组合物的影响的研究将被扩展到更高的温度下观察到的机械响应,如异常硬化和锯齿状流的强溶质相互作用的证据,但与这些相互作用的化学物种和变形机制尚未确定。 拟议的研究将可扩展到其他多组分合金,包括许多重要的商业合金,如IN 825,MP35和Alloy 28,它们与最近出现的fcc基高熵合金具有成分共性,但目前缺乏详细的变形机制的理解。该奖项反映了NSF的法定使命,并已被认为是值得支持的,通过评估使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Achieving ultra-high strength and ductility in equiatomic CrCoNi with partially recrystallized microstructures
  • DOI:
    10.1016/j.actamat.2018.12.015
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Slone, C. E.;Miao, J.;Mills, M. J.
  • 通讯作者:
    Mills, M. J.
Ordering effects on deformation substructures and strain hardening behavior of a CrCoNi based medium entropy alloy
  • DOI:
    10.1016/j.actamat.2021.116829
  • 发表时间:
    2021-04-01
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Miao, Jiashi;Slone, Connor;Mills, Michael J.
  • 通讯作者:
    Mills, Michael J.
SEM & STEM multi-scale characterization of fatigue damage in CrCoNi medium-entropy alloy with fully recrystallized microstructure.
扫描电镜
  • DOI:
    10.1017/s1431927620020851
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Mazánová, V.;Heczko, M.;Slone, C.E.;Kuběna, I.;Tobiáš, J.;George, E.P.;Kruml, T.;Polák, J.;Mills, M.J.
  • 通讯作者:
    Mills, M.J.
Elemental segregation to lattice defects in the CrMnFeCoNi high-entropy alloy during high temperature exposures
  • DOI:
    10.1016/j.actamat.2021.116719
  • 发表时间:
    2021-02-23
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Heczko, Milan;Mazanova, Veronika;Dlouhy, Antonin
  • 通讯作者:
    Dlouhy, Antonin
Deactivating Deformation Twinning in Medium-Entropy CrCoNi with Small Additions of Aluminum and Titanium
  • DOI:
    10.1016/j.scriptamat.2019.11.053
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Slone;C. R. LaRosa;C. Zenk;E. George;M. Ghazisaeidi;M. Mills
  • 通讯作者:
    C. Slone;C. R. LaRosa;C. Zenk;E. George;M. Ghazisaeidi;M. Mills
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Mills其他文献

An Electronic Clinical Decision-Making Tool for Patients with Suspected Colorectal Cancer—Preliminary Evaluation in Patients Presenting with Rectal Bleeding
针对疑似结直肠癌患者的电子临床决策工具——对直肠出血患者的初步评估
  • DOI:
    10.1093/jcag/gwz013
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Forbes;M. Cooray;Michael Hackett;Nishwa Shah;Yuhong Yuan;P. Antiperovitch;Tracey Corner;D. Chan;Michael Mills;D. Armstrong;T. Xenodemetropoulos
  • 通讯作者:
    T. Xenodemetropoulos
Certified randomness using a trapped-ion quantum processor
使用囚禁离子量子处理器的认证随机性
  • DOI:
    10.1038/s41586-025-08737-1
  • 发表时间:
    2025-03-26
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Minzhao Liu;Ruslan Shaydulin;Pradeep Niroula;Matthew DeCross;Shih-Han Hung;Wen Yu Kon;Enrique Cervero-Martín;Kaushik Chakraborty;Omar Amer;Scott Aaronson;Atithi Acharya;Yuri Alexeev;K. Jordan Berg;Shouvanik Chakrabarti;Florian J. Curchod;Joan M. Dreiling;Neal Erickson;Cameron Foltz;Michael Foss-Feig;David Hayes;Travis S. Humble;Niraj Kumar;Jeffrey Larson;Danylo Lykov;Michael Mills;Steven A. Moses;Brian Neyenhuis;Shaltiel Eloul;Peter Siegfried;James Walker;Charles Lim;Marco Pistoia
  • 通讯作者:
    Marco Pistoia
Prisoners as laboratory animals
  • DOI:
    10.1007/bf02695210
  • 发表时间:
    1974-07-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Michael Mills;Norval Morris
  • 通讯作者:
    Norval Morris
The Impact of the Sun on Trapped-Ion Quantum Computers
太阳对俘获离子量子计算机的影响
Advanced video technologies to support collaborative learning in school education and beyond
先进的视频技术支持学校教育及其他领域的协作学习
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Zahn;M. Finke;R. Pea;Michael Mills;Joseph Rosen
  • 通讯作者:
    Joseph Rosen

Michael Mills的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Mills', 18)}}的其他基金

GOALI: / DMREF: Multimodal design of revolutionary additive-enabled oxide dispersion strengthened superalloys
目标:/ DMREF:革命性添加剂氧化物弥散强化高温合金的多模态设计
  • 批准号:
    2323717
  • 财政年份:
    2023
  • 资助金额:
    $ 53.02万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: GOALI: Localized Phase Transformation (LPT) Strengthening for Next-Generation Superalloys
DMREF:合作研究:GOALI:下一代高温合金的局部相变 (LPT) 强化
  • 批准号:
    1922239
  • 财政年份:
    2019
  • 资助金额:
    $ 53.02万
  • 项目类别:
    Standard Grant
Proposal in Support of the International Conference on Strength of Materials (ICSMA18)
支持国际材料强度会议 (ICSMA18) 的提案
  • 批准号:
    1834401
  • 财政年份:
    2018
  • 资助金额:
    $ 53.02万
  • 项目类别:
    Standard Grant
Quantitative Determination of Dislocation Core Structure and Mobility Using Atomic Resolution Microscopy and Multiscale Modeling: Application to High Entropy Alloys
使用原子分辨率显微镜和多尺度建模定量测定位错核心结构和迁移率:在高熵合金中的应用
  • 批准号:
    1508505
  • 财政年份:
    2015
  • 资助金额:
    $ 53.02万
  • 项目类别:
    Continuing Grant
DMREF: GOALI: Mechanistic and Microstructure-Based Design Approach for Rapid Prototyping of Superalloys
DMREF:GOALI:基于机械和微观结构的高温合金快速原型设计方法
  • 批准号:
    1534826
  • 财政年份:
    2015
  • 资助金额:
    $ 53.02万
  • 项目类别:
    Standard Grant
I/UCRC FRP: Collaborative Research / Fundamental Understanding of Localized Deformation under Severe Microstructural Gradients
I/UCRC FRP:协作研究/严重微结构梯度下局部变形的基本理解
  • 批准号:
    1330273
  • 财政年份:
    2013
  • 资助金额:
    $ 53.02万
  • 项目类别:
    Standard Grant
GOALI: Micromechanical Experiments and Modeling of Shape Memory Response in Ni-Ti Based Alloys
GOALI:镍钛基合金的微机械实验和形状记忆响应建模
  • 批准号:
    1207494
  • 财政年份:
    2012
  • 资助金额:
    $ 53.02万
  • 项目类别:
    Continuing Grant
2013 Physical Metallurgy GRC; University of New England; Biddeford, Maine; July 28 -August 2, 2013
2013 物理冶金GRC;
  • 批准号:
    1249334
  • 财政年份:
    2012
  • 资助金额:
    $ 53.02万
  • 项目类别:
    Standard Grant
GOALI: Micromechanics Experiments and Modeling of Shape Memory Response in Ni-Ti Based Alloys
GOALI:镍钛合金形状记忆响应的微观力学实验和建模
  • 批准号:
    0907561
  • 财政年份:
    2009
  • 资助金额:
    $ 53.02万
  • 项目类别:
    Continuing Grant
Development and Application of a New Model for High Temperature Creep Based on the Jogged-Screw Model
基于Jogged-Screw模型的高温蠕变新模型的开发与应用
  • 批准号:
    0116126
  • 财政年份:
    2001
  • 资助金额:
    $ 53.02万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于时间序列间分位相依性(quantile dependence)的风险值(Value-at-Risk)预测模型研究
  • 批准号:
    71903144
  • 批准年份:
    2019
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Ecological and Evolutionary Constraints on the Temperature Dependence of Microbial Community Respiration
微生物群落呼吸温度依赖性的生态和进化限制
  • 批准号:
    NE/Y000889/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.02万
  • 项目类别:
    Research Grant
MCA: Interactions between density dependence and environmental stress in plant-microbial symbioses
MCA:植物-微生物共生中密度依赖性与环境胁迫之间的相互作用
  • 批准号:
    2321608
  • 财政年份:
    2024
  • 资助金额:
    $ 53.02万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: EAR-PF: Evaluating spatiotemporal dependence in groundwater-dependent ecosystem processes
博士后奖学金:EAR-PF:评估地下水依赖的生态系统过程的时空依赖性
  • 批准号:
    2305449
  • 财政年份:
    2023
  • 资助金额:
    $ 53.02万
  • 项目类别:
    Fellowship Award
Development of a group of particle transport codes connecting the wall, peripheral, and core regions including dependence of ro-vibrational states of molecular hydrogen
开发一组连接壁、外围和核心区域的粒子传输代码,包括分子氢的旋转振动状态的依赖性
  • 批准号:
    23K03362
  • 财政年份:
    2023
  • 资助金额:
    $ 53.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Epigenetic dependence of diffuse midline glioma with H3K27M mutation
具有 H3K27M 突变的弥漫性中线胶质瘤的表观遗传依赖性
  • 批准号:
    10736036
  • 财政年份:
    2023
  • 资助金额:
    $ 53.02万
  • 项目类别:
Targeting Ischemia-Induced Autophagy Dependence in hepatocellular Carcinoma through Image-guided Locoregional Therapy
通过图像引导局部治疗靶向肝细胞癌中缺血诱导的自噬依赖性
  • 批准号:
    10585078
  • 财政年份:
    2023
  • 资助金额:
    $ 53.02万
  • 项目类别:
Providers and Older Pain Patients with Prescription Opioid Dependence: A Qualitative Study to Understand Barriers to Opioid Taper, Cessation, and Transition to Buprenorphine.
具有处方阿片类药物依赖性的提供者和老年疼痛患者:一项定性研究,旨在了解阿片类药物逐渐减少、戒断和过渡到丁丙诺啡的障碍。
  • 批准号:
    10671358
  • 财政年份:
    2023
  • 资助金额:
    $ 53.02万
  • 项目类别:
PRECLINICAL MEDICATIONS SCREENING IN DEPENDENCE, AFFECT AND PAIN MODELS OF ALCOHOLISM
酗酒的依赖性、影响和疼痛模型的临床前药物筛选
  • 批准号:
    10953233
  • 财政年份:
    2023
  • 资助金额:
    $ 53.02万
  • 项目类别:
Pathological AMPA receptor adaptations governing dependence-escalated alcohol self-administration
病理性 AMPA 受体适应控制依赖性升级的酒精自我给药
  • 批准号:
    10592002
  • 财政年份:
    2023
  • 资助金额:
    $ 53.02万
  • 项目类别:
Tracking and regulation of nicotine dependence in the insular cortex
岛叶皮质尼古丁依赖性的跟踪和调节
  • 批准号:
    10604925
  • 财政年份:
    2023
  • 资助金额:
    $ 53.02万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了