Quantitative Determination of Dislocation Core Structure and Mobility Using Atomic Resolution Microscopy and Multiscale Modeling: Application to High Entropy Alloys
使用原子分辨率显微镜和多尺度建模定量测定位错核心结构和迁移率:在高熵合金中的应用
基本信息
- 批准号:1508505
- 负责人:
- 金额:$ 51.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-Technical Description: Dislocations are linear, mobile defects in crystals that control the strength and ductility of metals. Despite tremendous advances to model the structure and movement of dislocations at the atomic scale, the ability to validate these model predictions is significantly lagging. For instance, multiple microscopy methods have not been applied in concert to characterize dislocations. This research will develop innovative analysis techniques that help shape the future of defect analysis and are transportable to other metallic materials, ceramics, and semiconductors. Historically, top-down approaches have been employed whereby macroscopic measurements are used to deduce forces on defects and their mobility. This research enables a bottoms-up approach to determine these fundamental quantities, by leveraging revolutionary advances in electron microscopy with advanced atomic-scale modeling and multi-scale probes. These advances are applied to the high entropy alloys -a new class of materials with attractive and unusual properties, including increased strength and fracture toughness at lower temperatures. This research advances experimental and computational approaches to understand the origin of these remarkable properties at a fundamental defect level. This project synergizes new educational approaches that cross-cut microscopy and computational content. It also provides opportunities for undergraduate students to participate in interdisciplinary senior capstone projects. This research impacts pre-college education, through participation in the Ohio Department of Education Math and Science Program. It also offers professional development for high school science teachers, through an annual 'Materials Camp for Teachers' and an on-line repository of instructional materials targeted for grades 8-12.Technical Description: Atomistic and first principles calculations of dislocation structure and behavior have become an essential part of 'bottoms-up' modeling of the mechanical behavior of metals and alloys, and they are a key component of computational materials design in the Materials Genome Initiative. However, an inherent problem exists: atomic-scale calculations often lack validation at an appropriate length scale. The aim of this project is to transform bottoms-up modeling, by developing a coordinated approach for quantitative, experimentally-informed measurements of dislocation core structures and mobility. This is achieved by coupling recent advances in atomic resolution scanning electron microscopy with atomic-scale computations and multi-scale modeling. The experimental data are analyzed with computational techniques that quantify errors and extract local deformation, local strain energy, and thermodynamic forces on dislocations and other defects. Thermo-mechanical studies are conducted using in-situ heating and nano-drilling of holes in specimens to create non-equilibrium dislocation configurations. This opens up exciting, new possibilities for both static and dynamic study of fundamental dislocation behavior. This innovative approach is applied to a material system of keen, current interest, for which dislocation-level structure and behavior is important but presently unknown - namely the 'high entropy' alloys. Exciting preliminary results for a five-component fcc solid solution alloy have been obtained and are extended during initial studies. The applications are expanded during the program and as new alloy behavior is discovered. Experimental and computational procedures for the proposed dynamic measurements are developed initially using low-angle Al bicrystal structures that offer a simple 'model' system with well-defined dislocation structures. This transformative research establishes robust protocols to guide the emerging aspects for both static and dynamic dislocation analysis. For instance, the proposed microscopy methods are applied in concert to characterize the same type of defect structures. This research, when combined with the proposed innovative analysis techniques, helps to shape the future of defect analysis and is transportable to other metallic materials, ceramics, and semiconductors.
非技术描述: 位错是晶体中控制金属强度和延展性的线性、移动的缺陷。 尽管在原子尺度上对位错的结构和运动进行建模取得了巨大进展,但验证这些模型预测的能力却显着滞后。 例如,多种显微镜方法尚未被一致地应用于表征位错。 这项研究将开发创新的分析技术,帮助塑造缺陷分析的未来,并可移植到其他金属材料,陶瓷和半导体。 历史上,已经采用自上而下的方法,其中宏观测量用于推断缺陷上的力及其移动性。这项研究使自下而上的方法来确定这些基本量,通过利用先进的原子尺度建模和多尺度探针的电子显微镜的革命性进展。 这些进展应用于高熵合金-一类具有吸引人的和不寻常的特性的新材料,包括在较低温度下增加的强度和断裂韧性。 这项研究推进了实验和计算方法,以了解这些显着属性的起源在一个基本的缺陷水平。该项目协同新的教育方法,横切显微镜和计算内容。它还为本科生提供了参与跨学科高级顶点项目的机会。这项研究通过参与俄亥俄州教育部的数学和科学项目,影响了大学预科教育。它还为高中科学教师提供专业发展,通过每年的“教师材料营”和针对8- 12年级的教学材料在线存储库。技术描述: 位错结构和行为的原子和第一原理计算已经成为金属和合金力学行为的“自下而上”建模的重要组成部分,并且它们是材料基因组计划中计算材料设计的关键组成部分。 然而,存在一个固有的问题:原子尺度的计算往往缺乏适当的长度尺度的验证。 该项目的目的是通过开发一种协调的方法,对位错核心结构和流动性进行定量的、实验性的测量,从而改变自下而上的建模。 这是通过将原子分辨率扫描电子显微镜的最新进展与原子尺度计算和多尺度建模相结合来实现的。实验数据进行了分析与计算技术,量化误差和提取局部变形,局部应变能,和热力学力的位错和其他缺陷。 热机械研究进行原位加热和纳米钻孔的标本中创建非平衡位错配置。这为基本位错行为的静态和动态研究开辟了令人兴奋的新可能性。这种创新的方法被应用到一个材料系统的敏锐,当前的利益,其中位错水平的结构和行为是重要的,但目前未知的-即“高熵”合金。 令人兴奋的五元面心立方固溶体合金的初步结果已经获得,并在初步研究中扩展。随着新合金行为的发现,应用在程序中得到了扩展。实验和计算程序提出的动态测量开发最初使用低角度铝双晶体结构,提供了一个简单的“模型”系统与定义良好的位错结构。 这项变革性的研究建立了强大的协议,以指导静态和动态位错分析的新兴方面。 例如,所提出的显微镜方法被一致地应用于表征相同类型的缺陷结构。这项研究与提出的创新分析技术相结合,有助于塑造缺陷分析的未来,并可移植到其他金属材料,陶瓷和半导体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Mills其他文献
An Electronic Clinical Decision-Making Tool for Patients with Suspected Colorectal Cancer—Preliminary Evaluation in Patients Presenting with Rectal Bleeding
针对疑似结直肠癌患者的电子临床决策工具——对直肠出血患者的初步评估
- DOI:
10.1093/jcag/gwz013 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
N. Forbes;M. Cooray;Michael Hackett;Nishwa Shah;Yuhong Yuan;P. Antiperovitch;Tracey Corner;D. Chan;Michael Mills;D. Armstrong;T. Xenodemetropoulos - 通讯作者:
T. Xenodemetropoulos
Certified randomness using a trapped-ion quantum processor
使用囚禁离子量子处理器的认证随机性
- DOI:
10.1038/s41586-025-08737-1 - 发表时间:
2025-03-26 - 期刊:
- 影响因子:48.500
- 作者:
Minzhao Liu;Ruslan Shaydulin;Pradeep Niroula;Matthew DeCross;Shih-Han Hung;Wen Yu Kon;Enrique Cervero-Martín;Kaushik Chakraborty;Omar Amer;Scott Aaronson;Atithi Acharya;Yuri Alexeev;K. Jordan Berg;Shouvanik Chakrabarti;Florian J. Curchod;Joan M. Dreiling;Neal Erickson;Cameron Foltz;Michael Foss-Feig;David Hayes;Travis S. Humble;Niraj Kumar;Jeffrey Larson;Danylo Lykov;Michael Mills;Steven A. Moses;Brian Neyenhuis;Shaltiel Eloul;Peter Siegfried;James Walker;Charles Lim;Marco Pistoia - 通讯作者:
Marco Pistoia
Prisoners as laboratory animals
- DOI:
10.1007/bf02695210 - 发表时间:
1974-07-01 - 期刊:
- 影响因子:1.400
- 作者:
Michael Mills;Norval Morris - 通讯作者:
Norval Morris
The Impact of the Sun on Trapped-Ion Quantum Computers
太阳对俘获离子量子计算机的影响
- DOI:
10.1109/qce53715.2022.00151 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Michael Mills;J. Sedlacek;Tim Peterson;S. Campbell;J. Johansen;J. Dreiling;D. Francois - 通讯作者:
D. Francois
Advanced video technologies to support collaborative learning in school education and beyond
先进的视频技术支持学校教育及其他领域的协作学习
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
C. Zahn;M. Finke;R. Pea;Michael Mills;Joseph Rosen - 通讯作者:
Joseph Rosen
Michael Mills的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Mills', 18)}}的其他基金
GOALI: / DMREF: Multimodal design of revolutionary additive-enabled oxide dispersion strengthened superalloys
目标:/ DMREF:革命性添加剂氧化物弥散强化高温合金的多模态设计
- 批准号:
2323717 - 财政年份:2023
- 资助金额:
$ 51.5万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: GOALI: Localized Phase Transformation (LPT) Strengthening for Next-Generation Superalloys
DMREF:合作研究:GOALI:下一代高温合金的局部相变 (LPT) 强化
- 批准号:
1922239 - 财政年份:2019
- 资助金额:
$ 51.5万 - 项目类别:
Standard Grant
Compositional Dependence of Deformation Mechanisms in Concentrated FCC Solid Solutions
浓 FCC 固溶体中变形机制的成分依赖性
- 批准号:
1905748 - 财政年份:2019
- 资助金额:
$ 51.5万 - 项目类别:
Continuing Grant
Proposal in Support of the International Conference on Strength of Materials (ICSMA18)
支持国际材料强度会议 (ICSMA18) 的提案
- 批准号:
1834401 - 财政年份:2018
- 资助金额:
$ 51.5万 - 项目类别:
Standard Grant
DMREF: GOALI: Mechanistic and Microstructure-Based Design Approach for Rapid Prototyping of Superalloys
DMREF:GOALI:基于机械和微观结构的高温合金快速原型设计方法
- 批准号:
1534826 - 财政年份:2015
- 资助金额:
$ 51.5万 - 项目类别:
Standard Grant
I/UCRC FRP: Collaborative Research / Fundamental Understanding of Localized Deformation under Severe Microstructural Gradients
I/UCRC FRP:协作研究/严重微结构梯度下局部变形的基本理解
- 批准号:
1330273 - 财政年份:2013
- 资助金额:
$ 51.5万 - 项目类别:
Standard Grant
GOALI: Micromechanical Experiments and Modeling of Shape Memory Response in Ni-Ti Based Alloys
GOALI:镍钛基合金的微机械实验和形状记忆响应建模
- 批准号:
1207494 - 财政年份:2012
- 资助金额:
$ 51.5万 - 项目类别:
Continuing Grant
2013 Physical Metallurgy GRC; University of New England; Biddeford, Maine; July 28 -August 2, 2013
2013 物理冶金GRC;
- 批准号:
1249334 - 财政年份:2012
- 资助金额:
$ 51.5万 - 项目类别:
Standard Grant
GOALI: Micromechanics Experiments and Modeling of Shape Memory Response in Ni-Ti Based Alloys
GOALI:镍钛合金形状记忆响应的微观力学实验和建模
- 批准号:
0907561 - 财政年份:2009
- 资助金额:
$ 51.5万 - 项目类别:
Continuing Grant
Development and Application of a New Model for High Temperature Creep Based on the Jogged-Screw Model
基于Jogged-Screw模型的高温蠕变新模型的开发与应用
- 批准号:
0116126 - 财政年份:2001
- 资助金额:
$ 51.5万 - 项目类别:
Continuing Grant
相似海外基金
Sayuri Shirai: A discourse of body in self-determination for the learning of jazz improvisation
白井小百合:爵士乐即兴学习中自我决定的身体话语
- 批准号:
24K03530 - 财政年份:2024
- 资助金额:
$ 51.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Experimental Determination and Fundamental Theory of Mesoscopic Transport and Intrinsic Kinetics in CO2 Electrocatalysis
职业:二氧化碳电催化中介观输运和本征动力学的实验测定和基础理论
- 批准号:
2339693 - 财政年份:2024
- 资助金额:
$ 51.5万 - 项目类别:
Continuing Grant
Accurate Determination of Branching Fractions in Ammonia Combustion
氨燃烧中支化分数的准确测定
- 批准号:
2329341 - 财政年份:2024
- 资助金额:
$ 51.5万 - 项目类别:
Standard Grant
SPEED - Speed Profiling & Enhanced Efficiency Determination
SPEED - 速度分析
- 批准号:
10090368 - 财政年份:2023
- 资助金额:
$ 51.5万 - 项目类别:
Collaborative R&D
Policy for self-determination: the case study of ATSIC
自决政策:ATSIC 的案例研究
- 批准号:
DP230100714 - 财政年份:2023
- 资助金额:
$ 51.5万 - 项目类别:
Discovery Projects
Cryo-electron microscopy determination of G protein-coupled receptor states
冷冻电镜测定 G 蛋白偶联受体状态
- 批准号:
DE230101681 - 财政年份:2023
- 资助金额:
$ 51.5万 - 项目类别:
Discovery Early Career Researcher Award
Fate determination of new neurons in the post-stroke brain
中风后大脑中新神经元的命运决定
- 批准号:
23H02579 - 财政年份:2023
- 资助金额:
$ 51.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Manipulating sex determination pathways for pest control
操纵性别决定途径以控制害虫
- 批准号:
2869559 - 财政年份:2023
- 资助金额:
$ 51.5万 - 项目类别:
Studentship
Determination of pathophysiology of and fundamental development of treatement strategies for medication-related osteonecrosis of the jaw
药物相关颌骨坏死的病理生理学确定和治疗策略的基本发展
- 批准号:
23K16155 - 财政年份:2023
- 资助金额:
$ 51.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Visualization of Energy Metabolism and Analysis of Fetal Kidney Reveals Mechanism of Nephron Number Determination
能量代谢可视化和胎儿肾脏分析揭示肾单位数量测定机制
- 批准号:
23K18288 - 财政年份:2023
- 资助金额:
$ 51.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)