GOALI: Micromechanical Experiments and Modeling of Shape Memory Response in Ni-Ti Based Alloys
GOALI:镍钛基合金的微机械实验和形状记忆响应建模
基本信息
- 批准号:1207494
- 负责人:
- 金额:$ 44.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-15 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARYShape memory alloys (SMAs) are materials with remarkable properties that stem from a martensitic transformation. The crystallographic aspects of the martensitic transformation have been calculated and verified in a number of systems; however, there are fundamental aspects of shape memory and pseudoelastic behavior that are not understood. Principal among these is how the matrix accommodates the large strain associated with the transformation. Theoretically, accommodation may be achieved either by matrix plasticity or by inducing additional transformation variants. With plentiful evidence for plasticity in the literature, understanding the mechanism of defect generation has become a critical component for mitigating functional fatigue in thermomechanical cycling applications.By combining micromechanical testing, in situ and post mortem scanning transmission electron microscopy (STEM), and multi-scale computational modeling efforts, the current study aims to develop a more detailed picture of the microstructural evolution as a function of cycling. The fundamental study of defect generation and multiplication is being facilitated by the observation of plastic deformation associated with individual martensite transformation modes in small volumes of material (micropillars). By characterizing the defects generated during these isolated transformation events, the nature of the coupling between plasticity and the transformation is being illuminated. The results from micromechanical testing are also compared to the substructure development observed in pure thermal and combined thermomechanical cycling via in situ STEM experiments. This experimental work is being supplemented by microstructure-sensitive modeling at various length scales, including an Eshelby-type, variant-level prediction of the local stresses developed by specific martensite modes. In previously published work, this model's output has shown remarkable agreement with the active slip systems observed experimentally. This combination of a variety of novel experimental and computation techniques allows for an unprecedented insight into the fundamental mechanisms driving functional fatigue in NiTi-based SMAs and will eventually lead to more fatigue-resistant alloy design for future applications. NON-TECHNICAL SUMMARYShape memory alloys (SMAs), such as NiTi, are unique materials that are able to retain a "memory" of their original shape after cyclic heating or loading. This makes these materials extremely attractive for applications in the medical industry such as stents and surgical devices, in the automotive industry as solid-state actuators, and in the technological world for use in micro-electro-mechanical systems (MEMS). Unfortunately, these remarkable properties rapidly degrade with repeated cycling, making them unsuitable for many potential applications. The current work is focused on studying the mechanisms of functional fatigue in NiTi-based shape memory alloys through the use of a variety of novel experimental techniques. By employing micromechanical testing, in situ and post mortem scanning transmission electron microscopy (STEM), and computational modeling, the study aims to develop a more detailed understanding of how the microstructure evolves with both mechanical and thermal cycling. Specifically, this includes observation and analysis of the material?s behavior and resultant defect accumulation for pure mechanical cycling, pure thermal cycling, and combined thermomechanical conditions at different length scales. In addition, this program facilitates industrial and international collaborations with General Motors Research and Development, the Ruhr University in Bochum, Germany, and others. The results of this work will eventually aid in the development of fatigue-resistant alloys that can out-perform current state-of-the-art materials in demanding applications.
形状记忆合金(SMA)是具有源于马氏体转变的显著特性的材料。 马氏体相变的晶体学方面已经在许多系统中进行了计算和验证;然而,形状记忆和伪弹性行为的基本方面还不清楚。 其中最主要的是矩阵如何适应与变换相关的大应变。 理论上,调节可以通过基质可塑性或诱导额外的转化变体来实现。 随着文献中塑性的大量证据,理解缺陷产生的机制已成为减轻热机械循环应用中功能疲劳的关键组成部分。通过结合微机械测试,原位和事后扫描透射电子显微镜(STEM)和多尺度计算建模工作,目前的研究旨在开发一个更详细的图片的微观结构的演变作为循环的功能。 通过观察与小体积材料(微柱)中单个马氏体转变模式相关的塑性变形,促进了缺陷产生和增殖的基础研究。 通过表征在这些孤立的转变事件期间产生的缺陷,塑性和转变之间的耦合的性质被照亮。 还将微机械测试的结果与通过原位STEM实验在纯热和组合热机械循环中观察到的子结构发展进行了比较。 这项实验工作正在补充微观结构敏感的建模在不同的长度尺度,包括Eshelby型,变量水平的预测特定的马氏体模式开发的局部应力。 在以前发表的工作中,该模型的输出显示出显着的协议与实验观察到的主动滑移系统。 这种结合各种新的实验和计算技术允许一个前所未有的洞察力的基本机制驱动功能疲劳NiTi为基础的SMA,并最终导致更多的耐疲劳合金设计为未来的应用。 非技术概述形状记忆合金(SMA),例如NiTi,是能够在循环加热或加载之后保持其原始形状的“记忆”的独特材料。 这使得这些材料在医疗行业中的应用非常有吸引力,例如支架和手术器械,在汽车行业中作为固态致动器,以及在技术领域用于微机电系统(MEMS)。 不幸的是,这些显著的性能随着重复循环而迅速退化,使其不适合许多潜在的应用。 目前的工作主要是通过使用各种新的实验技术研究功能疲劳的机制,在镍钛基形状记忆合金。通过采用微机械测试,原位和死后扫描透射电子显微镜(STEM)和计算建模,该研究旨在更详细地了解微观结构如何随着机械和热循环而演变。 具体来说,这包括对材料的观察和分析。的行为和由此产生的缺陷积累的纯机械循环,纯热循环,并结合热机械条件在不同的长度尺度。 此外,该计划还促进了与通用汽车研发部、德国波鸿鲁尔大学等机构的工业和国际合作。 这项工作的结果最终将有助于开发耐疲劳合金,这些合金在苛刻的应用中可以超越当前最先进的材料。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Mills其他文献
An Electronic Clinical Decision-Making Tool for Patients with Suspected Colorectal Cancer—Preliminary Evaluation in Patients Presenting with Rectal Bleeding
针对疑似结直肠癌患者的电子临床决策工具——对直肠出血患者的初步评估
- DOI:
10.1093/jcag/gwz013 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
N. Forbes;M. Cooray;Michael Hackett;Nishwa Shah;Yuhong Yuan;P. Antiperovitch;Tracey Corner;D. Chan;Michael Mills;D. Armstrong;T. Xenodemetropoulos - 通讯作者:
T. Xenodemetropoulos
Certified randomness using a trapped-ion quantum processor
使用囚禁离子量子处理器的认证随机性
- DOI:
10.1038/s41586-025-08737-1 - 发表时间:
2025-03-26 - 期刊:
- 影响因子:48.500
- 作者:
Minzhao Liu;Ruslan Shaydulin;Pradeep Niroula;Matthew DeCross;Shih-Han Hung;Wen Yu Kon;Enrique Cervero-Martín;Kaushik Chakraborty;Omar Amer;Scott Aaronson;Atithi Acharya;Yuri Alexeev;K. Jordan Berg;Shouvanik Chakrabarti;Florian J. Curchod;Joan M. Dreiling;Neal Erickson;Cameron Foltz;Michael Foss-Feig;David Hayes;Travis S. Humble;Niraj Kumar;Jeffrey Larson;Danylo Lykov;Michael Mills;Steven A. Moses;Brian Neyenhuis;Shaltiel Eloul;Peter Siegfried;James Walker;Charles Lim;Marco Pistoia - 通讯作者:
Marco Pistoia
Prisoners as laboratory animals
- DOI:
10.1007/bf02695210 - 发表时间:
1974-07-01 - 期刊:
- 影响因子:1.400
- 作者:
Michael Mills;Norval Morris - 通讯作者:
Norval Morris
The Impact of the Sun on Trapped-Ion Quantum Computers
太阳对俘获离子量子计算机的影响
- DOI:
10.1109/qce53715.2022.00151 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Michael Mills;J. Sedlacek;Tim Peterson;S. Campbell;J. Johansen;J. Dreiling;D. Francois - 通讯作者:
D. Francois
Advanced video technologies to support collaborative learning in school education and beyond
先进的视频技术支持学校教育及其他领域的协作学习
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
C. Zahn;M. Finke;R. Pea;Michael Mills;Joseph Rosen - 通讯作者:
Joseph Rosen
Michael Mills的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Mills', 18)}}的其他基金
GOALI: / DMREF: Multimodal design of revolutionary additive-enabled oxide dispersion strengthened superalloys
目标:/ DMREF:革命性添加剂氧化物弥散强化高温合金的多模态设计
- 批准号:
2323717 - 财政年份:2023
- 资助金额:
$ 44.31万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: GOALI: Localized Phase Transformation (LPT) Strengthening for Next-Generation Superalloys
DMREF:合作研究:GOALI:下一代高温合金的局部相变 (LPT) 强化
- 批准号:
1922239 - 财政年份:2019
- 资助金额:
$ 44.31万 - 项目类别:
Standard Grant
Compositional Dependence of Deformation Mechanisms in Concentrated FCC Solid Solutions
浓 FCC 固溶体中变形机制的成分依赖性
- 批准号:
1905748 - 财政年份:2019
- 资助金额:
$ 44.31万 - 项目类别:
Continuing Grant
Proposal in Support of the International Conference on Strength of Materials (ICSMA18)
支持国际材料强度会议 (ICSMA18) 的提案
- 批准号:
1834401 - 财政年份:2018
- 资助金额:
$ 44.31万 - 项目类别:
Standard Grant
DMREF: GOALI: Mechanistic and Microstructure-Based Design Approach for Rapid Prototyping of Superalloys
DMREF:GOALI:基于机械和微观结构的高温合金快速原型设计方法
- 批准号:
1534826 - 财政年份:2015
- 资助金额:
$ 44.31万 - 项目类别:
Standard Grant
Quantitative Determination of Dislocation Core Structure and Mobility Using Atomic Resolution Microscopy and Multiscale Modeling: Application to High Entropy Alloys
使用原子分辨率显微镜和多尺度建模定量测定位错核心结构和迁移率:在高熵合金中的应用
- 批准号:
1508505 - 财政年份:2015
- 资助金额:
$ 44.31万 - 项目类别:
Continuing Grant
I/UCRC FRP: Collaborative Research / Fundamental Understanding of Localized Deformation under Severe Microstructural Gradients
I/UCRC FRP:协作研究/严重微结构梯度下局部变形的基本理解
- 批准号:
1330273 - 财政年份:2013
- 资助金额:
$ 44.31万 - 项目类别:
Standard Grant
2013 Physical Metallurgy GRC; University of New England; Biddeford, Maine; July 28 -August 2, 2013
2013 物理冶金GRC;
- 批准号:
1249334 - 财政年份:2012
- 资助金额:
$ 44.31万 - 项目类别:
Standard Grant
GOALI: Micromechanics Experiments and Modeling of Shape Memory Response in Ni-Ti Based Alloys
GOALI:镍钛合金形状记忆响应的微观力学实验和建模
- 批准号:
0907561 - 财政年份:2009
- 资助金额:
$ 44.31万 - 项目类别:
Continuing Grant
Development and Application of a New Model for High Temperature Creep Based on the Jogged-Screw Model
基于Jogged-Screw模型的高温蠕变新模型的开发与应用
- 批准号:
0116126 - 财政年份:2001
- 资助金额:
$ 44.31万 - 项目类别:
Continuing Grant
相似海外基金
ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
- 批准号:
EP/X025381/1 - 财政年份:2024
- 资助金额:
$ 44.31万 - 项目类别:
Research Grant
Replicating the cartilage micromechanical environment
复制软骨微机械环境
- 批准号:
DP240102160 - 财政年份:2024
- 资助金额:
$ 44.31万 - 项目类别:
Discovery Projects
Cochlear micromechanical mechanisms underlying psychoacoustic phenomena
心理声学现象背后的耳蜗微机械机制
- 批准号:
10715565 - 财政年份:2023
- 资助金额:
$ 44.31万 - 项目类别:
Elucidation of mechanisms underlying mechanical stimulus perception and Ca2+ propagation by micromechanical stimulation in living cells
阐明活细胞中微机械刺激机械刺激感知和 Ca2+ 传播的机制
- 批准号:
23K18133 - 财政年份:2023
- 资助金额:
$ 44.31万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Observations and Micromechanical Modeling of the Behavior of Snow/Ice Lenses Under Load in Order to Understand Avalanche Nucleation
为了了解雪崩成核,对雪/冰透镜在负载下的行为进行观察和微机械建模
- 批准号:
2227842 - 财政年份:2023
- 资助金额:
$ 44.31万 - 项目类别:
Standard Grant
Reconstruction of three-dimensional organ of Corti micromechanical motion patterns via optical coherence tomography
光学相干断层扫描重建三维Corti器官微机械运动模式
- 批准号:
10533408 - 财政年份:2022
- 资助金额:
$ 44.31万 - 项目类别:
CAREER: Fundamentals of Modeling Deformation Twinning in Polycrystalline Materials Driven by Diffraction-Based Micromechanical Data
职业:基于衍射的微机械数据驱动的多晶材料变形孪生建模基础
- 批准号:
2143808 - 财政年份:2022
- 资助金额:
$ 44.31万 - 项目类别:
Continuing Grant
Multimodal and Multiscale-driven Quantification of Micromechanical Metrics for Location-specific Fatigue Microcracking
特定位置疲劳微裂纹的多模态和多尺度驱动的微机械指标量化
- 批准号:
2152369 - 财政年份:2022
- 资助金额:
$ 44.31万 - 项目类别:
Continuing Grant
Towards a Micromechanical Damage Model for Lightweight Materials in Vehicle Crash
车辆碰撞中轻质材料的微机械损伤模型
- 批准号:
RGPIN-2017-04716 - 财政年份:2022
- 资助金额:
$ 44.31万 - 项目类别:
Discovery Grants Program - Individual
PhD Studentship in Micromechanical Modelling of Energetic Crystals for Estimating the Thermomechanical Response at High Strain Rates
含能晶体微机械建模博士生,用于估计高应变率下的热机械响应
- 批准号:
2740323 - 财政年份:2022
- 资助金额:
$ 44.31万 - 项目类别:
Studentship