A high throughput platform for rapid single cell surface mapping

用于快速单细胞表面绘图的高通量平台

基本信息

  • 批准号:
    1905786
  • 负责人:
  • 金额:
    $ 37.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Cell surface charge, net electricity on cell surface, is a promising new biomarker for rare cell detection, cell sorting, and pathology stage monitoring of malignant cell. Cell surface charge pattern also reflects the in situ dynamic status of cell membrane, which is critical for membrane-regulated cell functions such as endocytosis, muscle cell contraction, nutrient transport, T cell activation and insulin release. Recent evidences show that a variety of cell functions including cell aggregation, cell division and cell migration can be modulated by manipulating cell surface charge patterns. Therefore rapid mapping of single cell surface charge patterns will provide a unique and important approach in advancing analysis of cells and regulation of their functions. However, to date rapid mapping of living cell surface charge remains a large challenge owing to lack of robust techniques capable of measurements at the micro and nano scale. Scanning ion conductance microscopy has been used for quantitative cell surface charge mapping. This method employs a single nano pipette to approach the cell surface point by point, resulting in a low efficiency, labor intensive and destructive measurement. The proposed research aims to address this long standing challenge by exploring a universal method for rapid, non-destructive characterization and mapping of cell surface charge. In addition, with educational and outreach activities, the proposed research is poised to enhance the interdisciplinary learning experience for undergraduate, graduate and K-12 students. The objective of this project is to explore a lab-on-a- chip platform for rapid, non-destructive living cell surface charge mapping. Such a device will 1) foster the breakthrough of discovering new biomarkers for cell identification, sorting and real time monitoring, and 2) greatly advance the knowledge in understanding the roles cell electrical properties play on cell functions. To achieve the objective, the following tasks will be pursued: 1) demonstration of acoustic cell manipulator that will rapidly focus/release individual living cell onto/off the probe surface in a continuous flow, 2) study of an array of nanopores that can accurately map the cell surface charge with high temporal resolution and accuracy, 3) implementation of signal multiplexing that will enable simultaneous measurement of surface charge distributions via a nanopore array, and 4) validation of the platform for rapid cell surface charge mapping using human dermal fibroblasts cells. The use of non-intrusive cell manipulation enables quick focus/release cells onto/off the nanopore array's surface, allowing rapid, high-throughput surface charge mapping in continuous flow. The use of nanopore array in combination with signal multiplexing enables rapid mapping of the cell surface charge characteristics at one time without complex measurement electronics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
细胞表面电荷是细胞表面的净电荷,是一种很有前途的新的生物标志物,用于稀有细胞的检测、细胞分选和恶性细胞的病理分期监测。细胞表面电荷模式也反映了细胞膜的原位动态状态,这对于膜调节的细胞功能如内吞作用、肌肉细胞收缩、营养转运、T细胞活化和胰岛素释放至关重要。最近的研究表明,通过调控细胞表面电荷模式,可以调控细胞的聚集、分裂和迁移等多种功能。 因此,单细胞表面电荷模式的快速绘图将提供一个独特的和重要的方法,在推进细胞的分析和调节其功能。然而,迄今为止,活细胞表面电荷的快速映射仍然是一个很大的挑战,因为缺乏强大的技术,能够在微米和纳米尺度的测量。 扫描离子电导显微镜已被用于定量细胞表面电荷映射。该方法采用单个纳米移液器逐点接近细胞表面,导致效率低、劳动密集和破坏性测量。拟议的研究旨在通过探索一种快速,非破坏性表征和绘制细胞表面电荷的通用方法来解决这一长期存在的挑战。 此外,通过教育和推广活动,拟议的研究有望增强本科生,研究生和K-12学生的跨学科学习体验。该项目的目标是探索一个芯片实验室平台,用于快速,非破坏性的活细胞表面电荷映射。这种装置将1)促进发现用于细胞识别、分选和真实的时间监测的新生物标志物的突破,以及2)极大地推进理解细胞电特性对细胞功能的作用的知识。为实现这一目标,将开展以下工作:1)演示声学细胞操纵器,其将以连续流将单个活细胞快速聚焦到探针表面上/从探针表面释放,2)研究纳米孔阵列,其可以以高时间分辨率和准确度准确地映射细胞表面电荷,3)实现信号多路复用,其将使得能够经由纳米孔阵列同时测量表面电荷分布,和4)使用人皮肤成纤维细胞验证用于快速细胞表面电荷映射的平台。 非侵入性细胞操作的使用使得能够将细胞快速聚焦/释放到纳米孔阵列的表面上/从纳米孔阵列的表面释放,从而允许在连续流中快速、高通量的表面电荷映射。纳米孔阵列与信号多路复用相结合的使用能够在没有复杂的测量电子设备的情况下一次性快速绘制细胞表面电荷特性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Formation and capture of droplet with high volume ratio of cell to droplet
  • DOI:
    10.1088/1361-6439/ac0a57
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Zhi Zhao;Zhen-Yu Xun;Liang-Liang Fan-Liang;J. Zhe;Liang Zhao
  • 通讯作者:
    Zhi Zhao;Zhen-Yu Xun;Liang-Liang Fan-Liang;J. Zhe;Liang Zhao
A Microfluidic Sensor for Continuous, in Situ Surface Charge Measurement of Single Cells
  • DOI:
    10.1021/acssensors.9b02411
  • 发表时间:
    2020-02-01
  • 期刊:
  • 影响因子:
    8.9
  • 作者:
    Ni, Liwei;Shaik, Rubia;Zhe, Jiang
  • 通讯作者:
    Zhe, Jiang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiang Zhe其他文献

A passive microfluidic device for continuous microparticle enrichment
用于连续微粒富集的被动微流控装置
  • DOI:
    10.1002/elps.201800454
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Liang-Liang Fan;Xiao-Liang Zhu;Qing Yan;Jiang Zhe;Liang Zhao
  • 通讯作者:
    Liang Zhao
Joint PSK Data Detection and Channel Estimation Under Frequency Selective Sparse Multipath Channels
频率选择性稀疏多径信道下的联合PSK数据检测和信道估计
  • DOI:
    10.1109/tcomm.2020.2975172
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Jiang Zhe;Shen Xiaohong;Wang Haiyan;Ding Zhi
  • 通讯作者:
    Ding Zhi
Research on active structural acoustic control by radiation modes
辐射模式主动结构声控制研究
Failure Analysis on a Collapsed Flat Cover of an Adjustable Ballast Tank Used in Deep-Sea Submersibles
深海潜水器可调压载舱平盖塌陷失效分析
  • DOI:
    10.3390/app9235258
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang Fang;Wu Mian;Tian Genqi;Jiang Zhe;Zhang Shun;Zhang Jian;Cui Weicheng
  • 通讯作者:
    Cui Weicheng
Ultra-Short Baseline Positioning System for Full Ocean Depth
全海洋深度超短基线定位系统
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cui Weicheng;Zhou Xin;Jiang Zhe
  • 通讯作者:
    Jiang Zhe

Jiang Zhe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jiang Zhe', 18)}}的其他基金

Ultrasensitive, Rapid, Amplification-Free RNA Virus Detection Using Nanodimer-Based Nucleic Acid Target Sequence Recognition
使用基于纳米二聚体的核酸靶序列识别进行超灵敏、快速、无扩增的 RNA 病毒检测
  • 批准号:
    2232940
  • 财政年份:
    2023
  • 资助金额:
    $ 37.34万
  • 项目类别:
    Standard Grant
PFI-TT: Translating an intelligent lubricant condition monitoring system into a commercially viable prototype
PFI-TT:将智能润滑油状态监测系统转化为商业上可行的原型
  • 批准号:
    1940879
  • 财政年份:
    2020
  • 资助金额:
    $ 37.34万
  • 项目类别:
    Standard Grant
I-Corps: A Smart Sensing System for Online Machine Health Monitoring
I-Corps:用于在线机器健康监测的智能传感系统
  • 批准号:
    2027849
  • 财政年份:
    2020
  • 资助金额:
    $ 37.34万
  • 项目类别:
    Standard Grant
IIBR Instrumentation: Collaborative Research: Development of a Single-Biomolecule Detection Instrument via Digital Counting of Nanoparticles
IIBR Instrumentation:合作研究:通过纳米颗粒数字计数开发单生物分子检测仪器
  • 批准号:
    1911526
  • 财政年份:
    2019
  • 资助金额:
    $ 37.34万
  • 项目类别:
    Standard Grant
MRI: Development of an Instrument for Single Cell Electrical Stimulation and Analysis
MRI:单细胞电刺激和分析仪器的开发
  • 批准号:
    1625544
  • 财政年份:
    2016
  • 资助金额:
    $ 37.34万
  • 项目类别:
    Standard Grant
IDBR: TYPE A: An Integrated Microfluidic Platform for Parallel Analysis of Cell Secretome and Cell Responses in Real Time
IDBR:A 型:用于实时并行分析细胞分泌组和细胞反应的集成微流体平台
  • 批准号:
    1353720
  • 财政年份:
    2014
  • 资助金额:
    $ 37.34万
  • 项目类别:
    Continuing Grant
Rapid, Selective, Onsite Detection of Bacterial Pathogens Using A Bioinspired Microfluidic Sensor
使用仿生微流体传感器快速、选择性地现场检测细菌病原体
  • 批准号:
    1200032
  • 财政年份:
    2012
  • 资助金额:
    $ 37.34万
  • 项目类别:
    Standard Grant
IDR: A Novel Multiplexed Multichannel Biosensor Chip for High-Throughput Detection of Macromolecular Biomarkers
IDR:一种新型多重多通道生物传感器芯片,用于大分子生物标志物的高通量检测
  • 批准号:
    1129727
  • 财政年份:
    2011
  • 资助金额:
    $ 37.34万
  • 项目类别:
    Standard Grant
A High Throughput Microfluidic Sensor for Real Time Health Monitoring of Rotating Machinery
用于旋转机械实时健康监测的高通量微流体传感器
  • 批准号:
    0968736
  • 财政年份:
    2010
  • 资助金额:
    $ 37.34万
  • 项目类别:
    Standard Grant
IDBR: Development of A Multiplexed Microfluidic Coulter Counting Instrument
IDBR:多重微流控库尔特计数仪的开发
  • 批准号:
    0649798
  • 财政年份:
    2007
  • 资助金额:
    $ 37.34万
  • 项目类别:
    Continuing Grant

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目

相似海外基金

BEASTS-Novel Biomimetic Liver Platform for Enabling ALD Researchers
BEASTS-为 ALD 研究人员提供支持的新型仿生肝脏平台
  • 批准号:
    10697452
  • 财政年份:
    2023
  • 资助金额:
    $ 37.34万
  • 项目类别:
MetabolGut: a rapid assay platform to evaluate the impact drugs on lipid-handlingpathways and chylomicron-associated drug distribution using stem cell-drivenhuman absorptive enterocytes.
MetabolGut:一个快速检测平台,使用干细胞驱动的人体吸收性肠上皮细胞来评估药物对脂质处理途径和乳糜微粒相关药物分布的影响。
  • 批准号:
    10766493
  • 财政年份:
    2023
  • 资助金额:
    $ 37.34万
  • 项目类别:
eSynthesis - an automated platform technology for rapid, high-throughput and clonal cell-free synthetic DNA synthesis
eSynthesis - 一种自动化平台技术,用于快速、高通量和克隆无细胞合成 DNA 合成
  • 批准号:
    10075886
  • 财政年份:
    2023
  • 资助金额:
    $ 37.34万
  • 项目类别:
    Grant for R&D
Development of a high throughput platform for screening directed evolution libraries
开发用于筛选定向进化文库的高通量平台
  • 批准号:
    10574429
  • 财政年份:
    2023
  • 资助金额:
    $ 37.34万
  • 项目类别:
High-Throughput, Rapid, and Epitope-Specific Quantification of Neutralizing Antibodies Using Digital Nanoparticle Sensors
使用数字纳米颗粒传感器对中和抗体进行高通量、快速和表位特异性定量
  • 批准号:
    10432809
  • 财政年份:
    2022
  • 资助金额:
    $ 37.34万
  • 项目类别:
High-Throughput, Rapid, and Epitope-Specific Quantification of Neutralizing Antibodies Using Digital Nanoparticle Sensors
使用数字纳米颗粒传感器对中和抗体进行高通量、快速和表位特异性定量
  • 批准号:
    10611462
  • 财政年份:
    2022
  • 资助金额:
    $ 37.34万
  • 项目类别:
Eye-Path Resubmission
眼路重新提交
  • 批准号:
    10480705
  • 财政年份:
    2022
  • 资助金额:
    $ 37.34万
  • 项目类别:
High-throughput identification of molecular targets responsible for drug-induced peripheral neuropathies.
高通量鉴定导致药物引起的周围神经病变的分子靶标。
  • 批准号:
    10371819
  • 财政年份:
    2022
  • 资助金额:
    $ 37.34万
  • 项目类别:
SBIR Fast Track: Development of a High-throughput Magnetic Cytometer for Single Cell Sorting
SBIR 快速通道:开发用于单细胞分选的高通量磁力细胞仪
  • 批准号:
    10703514
  • 财政年份:
    2022
  • 资助金额:
    $ 37.34万
  • 项目类别:
FINGERPRINT: Fully Integrated Culturomic Platform for Rapid, High-throughput Microbial Identification and Characterisation
FINGERPRINT:用于快速、高通量微生物鉴定和表征的完全集成的培养组学平台
  • 批准号:
    BB/W019531/1
  • 财政年份:
    2022
  • 资助金额:
    $ 37.34万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了