Group Actions and Rigidity
集体行动和僵化
基本信息
- 批准号:1906107
- 负责人:
- 金额:$ 36.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the study of mathematical objects, a key role is often played by the symmetries of the object - particularly when the object has many symmetries. This research investigates ways of characterizing, describing, and studying spaces with many symmetries in various dynamical, geometric and topological settings. These questions often require learning, adapting and applying ideas and techniques from many areas of mathematics. This work has connections with diverse areas of mathematics: from differential equations (the use of wavefront sets to study fine analytic properties of solutions to equations) to theoretical computer science ((super)expanders, Kazhdan's property (T), Lafforgue's strong property (T) and coarse embedding problems). Graduate student funding will be used to train a new generation of experts.The main thrust of the project is to exploit connections between a wide set of areas to further understand fundamental structures related to lattices in Lie groups. A major focus is the study of group actions on manifolds where the PI recently made major breakthroughs on conjectures of Zimmer's. Another major focus is on the structure of hyperbolic manifolds where the PI recently made another major breakthrough on a question of McMullen and Reid. Other topics include studying families of expanders and superexpanders arising from dynamical constructions, both to understand their coarse geometry and to see if they have novel applications to computer science, dynamics or operator algebras.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在数学对象的研究中,对象的对称性常常扮演着关键的角色,特别是当对象有许多对称性时。本研究探讨在各种动力学、几何学和拓扑学环境中表征、描述和研究具有许多对称性的空间的方法。这些问题往往需要学习,适应和应用数学的许多领域的想法和技术。这项工作与数学的各个领域都有联系:从微分方程(使用波阵面集来研究方程解的精细分析性质)到理论计算机科学((超级)扩展器、Kazhdan性质(T)、Lafforgue强性质(T))和粗糙嵌入问题)。研究生资助将用于培养新一代的专家。该项目的主旨是利用广泛领域之间的联系,进一步了解李群中与格相关的基本结构。 一个主要的重点是研究流形上的群作用,PI最近在Zimmer的结构上取得了重大突破。 另一个主要的重点是双曲流形的结构,PI最近取得了另一个重大突破的问题McMullen和里德。其他主题包括研究由动力学结构产生的膨胀器和超膨胀器族,既要了解它们的粗糙几何,又要了解它们在计算机科学、动力学或算子代数中是否有新的应用。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Arithmeticity, superrigidity and totally geodesic submanifolds of complex hyperbolic manifolds
复双曲流形的算术性、超刚性和全测地线子流形
- DOI:10.1007/s00222-023-01186-5
- 发表时间:2023
- 期刊:
- 影响因子:3.1
- 作者:Bader, Uri;Fisher, David;Miller, Nicholas;Stover, Matthew
- 通讯作者:Stover, Matthew
Finiteness of maximal geodesic submanifolds in hyperbolic hybrids
双曲杂化中最大测地线子流形的有限性
- DOI:10.4171/jems/1077
- 发表时间:2021
- 期刊:
- 影响因子:2.6
- 作者:Fisher, David;Lafont, Jean-François;Miller, Nicholas;Stover, Matthew
- 通讯作者:Stover, Matthew
Arithmeticity, superrigidity, and totally geodesic submanifolds
算术性、超刚性和完全测地线子流形
- DOI:10.4007/annals.2021.193.3.4
- 发表时间:2021
- 期刊:
- 影响因子:4.9
- 作者:Bader, Uri;Fisher, David;Miller, Nicholas;Stover, Matthew
- 通讯作者:Stover, Matthew
Zimmer's conjecture for actions of SL(m,Z).
Zimmer 对 SL(m,Z) 作用的猜想。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:3.1
- 作者:Brown, A;Fisher, D;Hurtado, S
- 通讯作者:Hurtado, S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Fisher其他文献
Freeze-framing territory: time and its significance in land governance
冻结领土:时间及其在土地治理中的意义
- DOI:
10.1080/13562576.2016.1174557 - 发表时间:
2016 - 期刊:
- 影响因子:2.4
- 作者:
David Fisher - 通讯作者:
David Fisher
Early State Organization and Follow-up over One Year
早期状态组织和一年多的后续行动
- DOI:
- 发表时间:
1992 - 期刊:
- 影响因子:2.4
- 作者:
B. Fajardo;Margaret Browning;David Fisher;J. Paton - 通讯作者:
J. Paton
Participation, development and tensions in New Zealand donor engagement with non-secular recipients: A case for recognising post-secularity in practice
新西兰捐助者与非世俗接受者交往中的参与、发展和紧张:在实践中认识后世俗性的一个案例
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Walter Lewthwaite;David Fisher;H. Rennie - 通讯作者:
H. Rennie
Strengthening Kazhdan’s property (T) by Bochner methods
通过 Bochner 方法增强 Kazhdan 的财产 (T)
- DOI:
10.1007/s10711-011-9686-9 - 发表时间:
2011 - 期刊:
- 影响因子:0.5
- 作者:
David Fisher;Theron Hitchman - 通讯作者:
Theron Hitchman
BASE DEFICIT DURING CITEIPC ARREST SECONDARY TO RESPIRATORY FAILURE IN IMMATURE PIGS
未成熟猪因呼吸衰竭在 CITEIPC 逮捕期间的基础缺陷
- DOI:
10.1203/00006450-198704010-00211 - 发表时间:
1987-04-01 - 期刊:
- 影响因子:3.100
- 作者:
Larry Jefferson;David Fisher;John Rosborough;Christopher Martin;Thomas Hansen - 通讯作者:
Thomas Hansen
David Fisher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Fisher', 18)}}的其他基金
Conference: Groups Actions and Rigidity: Around the Zimmer Program
会议:团体行动和刚性:围绕 Zimmer 计划
- 批准号:
2349566 - 财政年份:2024
- 资助金额:
$ 36.97万 - 项目类别:
Standard Grant
The evolution and plasticity of social networks traits
社交网络特征的演变和可塑性
- 批准号:
NE/X013227/1 - 财政年份:2022
- 资助金额:
$ 36.97万 - 项目类别:
Research Grant
New Analytic Techniques in Group Theory
群论中的新分析技术
- 批准号:
1607041 - 财政年份:2016
- 资助金额:
$ 36.97万 - 项目类别:
Standard Grant
New analytic techniques in group theory
群论中的新分析技术
- 批准号:
1308291 - 财政年份:2013
- 资助金额:
$ 36.97万 - 项目类别:
Continuing Grant
CAREER: New Analytic Techniques in Group Theory
职业:群论中的新分析技术
- 批准号:
0643546 - 财政年份:2007
- 资助金额:
$ 36.97万 - 项目类别:
Continuing Grant
Group Actions, rigidity and geometry
群体行动、刚性和几何形状
- 批准号:
0541917 - 财政年份:2005
- 资助金额:
$ 36.97万 - 项目类别:
Standard Grant
Superrigidity, Actions on Manifolds and CAT(0) Geometry
超刚性、流形作用和 CAT(0) 几何
- 批准号:
0226121 - 财政年份:2002
- 资助金额:
$ 36.97万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
- 批准号:
9902411 - 财政年份:1999
- 资助金额:
$ 36.97万 - 项目类别:
Fellowship Award
相似海外基金
Group Actions, Rigidity, and Invariant Measures
群体行动、刚性和不变措施
- 批准号:
2400191 - 财政年份:2024
- 资助金额:
$ 36.97万 - 项目类别:
Standard Grant
CAREER: Rigidity of Group Actions on Manifolds
职业:流形上群体行动的刚性
- 批准号:
2020013 - 财政年份:2019
- 资助金额:
$ 36.97万 - 项目类别:
Continuing Grant
CAREER: Dynamical Rigidity Related to Group Actions and Arithmetics
职业:与群体行动和算术相关的动态刚性
- 批准号:
1753042 - 财政年份:2018
- 资助金额:
$ 36.97万 - 项目类别:
Continuing Grant
CAREER: Rigidity of Group Actions on Manifolds
职业:流形上群体行动的刚性
- 批准号:
1752675 - 财政年份:2018
- 资助金额:
$ 36.97万 - 项目类别:
Continuing Grant
Rigidity problem on group actions with an invariant geometric structure
具有不变几何结构的群动作的刚性问题
- 批准号:
26400085 - 财政年份:2014
- 资助金额:
$ 36.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on rigidity of foliations and group actions based on characteristic classes
基于特征类的叶状结构刚度和群作用研究
- 批准号:
26800047 - 财政年份:2014
- 资助金额:
$ 36.97万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Dynamics of Large Group Actions, Rigidity, and Diophantine geometry
大群体作用动力学、刚性和丢番图几何
- 批准号:
EP/H000097/1 - 财政年份:2010
- 资助金额:
$ 36.97万 - 项目类别:
Research Grant
Geometry, Rigidity, and Group Actions
几何、刚度和群作用
- 批准号:
0734851 - 财政年份:2007
- 资助金额:
$ 36.97万 - 项目类别:
Standard Grant
Rigidity of group actions in Ergodic Theory, and related topics
遍历理论中群体行为的刚性及相关主题
- 批准号:
0604611 - 财政年份:2006
- 资助金额:
$ 36.97万 - 项目类别:
Standard Grant
Group Actions, rigidity and geometry
群体行动、刚性和几何形状
- 批准号:
0541917 - 财政年份:2005
- 资助金额:
$ 36.97万 - 项目类别:
Standard Grant