Conference: Groups Actions and Rigidity: Around the Zimmer Program
会议:团体行动和刚性:围绕 Zimmer 计划
基本信息
- 批准号:2349566
- 负责人:
- 金额:$ 3.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This NSF award provides support for US based participants to attend a sequence of workshops, to be held at Centre Internationale de Rencontres mathematique in Marseilles and the Insitut Henri Poincare in Paris in April-July 2024. These workshops are held in conjunction with a special semester Group actions and Rigidity: Around the Zimmer Program at IHP during this period. The goal of both the workshops and special semester are to bring together specialists working in a related cluster of timely and important topics in dynamics and geometry related to, actions of large groups or spaces with lots of symmetries. The primary purpose of the award is to provide travel funding to allow early career scholars from the US to participate in the workshops and the semester program.Highly symmetric manifolds traditionally play a central role in mathematics, ranging from number theory to dynamics to geometry. This research topic centers on a program put forward by Zimmer and Gromov to study manifolds with large groups of symmetries, with the general idea that such manifolds should arise from natural algebraic and geometric constructions. Investigations in this area are often spurred by sudden discovery of or deepening of connections to other areas of mathematics. Recent new developments have been occurring with breakneck speed. Particularly important have been deepening connections to low dimensional topology, to homogeneous and hyperbolic dynamics as well as novel connections to operator algebras, and to classical work on characterizations of Lie groups among connected topological groups. The concentrated activity around this special term and the workshops funded in part by this grant are needed to capture this momentum and spur further progress. Information about individual workshops and meetings can be found at https://indico.math.cnrs.fr/event/9043/.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该NSF奖项支持美国的参与者参加一系列研讨会,这些研讨会将于2024年4月至7月在马赛的国际数学中心和巴黎的亨利·庞加莱研究所举行。这些讲习班是与国际水文计划在此期间围绕齐默计划举办的一个特别学期联合举办的:集体行动和僵化。工作坊和特别学期的目标都是将相关的专家聚集在一起,这些专家工作在与大群体或具有大量对称性的空间的行动有关的动力学和几何方面的及时和重要的主题。该奖项的主要目的是提供旅行资金,让来自美国的早期职业学者参加研讨会和学期计划。高度对称的流形传统上在数学中扮演着核心角色,从数论到动力学再到几何。这项研究的主题集中在Zimmer和Gromov提出的研究具有大对称群的流形的程序上,一般的想法是这种流形应该来自自然的代数和几何构造。这一领域的研究往往是由于突然发现或加深了与其他数学领域的联系而引起的。最近的新发展正在以惊人的速度发生。尤其重要的是加深了与低维拓扑、齐次和双曲动力学的联系,以及与算子代数的新联系,以及关于连通拓扑群中李群的刻画的经典工作。需要围绕这一特别期限集中开展活动,并举办部分由这笔赠款资助的讲习班,以抓住这一势头并推动取得进一步进展。有关个别研讨会和会议的信息可在https://indico.math.cnrs.fr/event/9043/.This奖上找到,该奖项反映了国家科学基金会的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Fisher其他文献
Freeze-framing territory: time and its significance in land governance
冻结领土:时间及其在土地治理中的意义
- DOI:
10.1080/13562576.2016.1174557 - 发表时间:
2016 - 期刊:
- 影响因子:2.4
- 作者:
David Fisher - 通讯作者:
David Fisher
Early State Organization and Follow-up over One Year
早期状态组织和一年多的后续行动
- DOI:
- 发表时间:
1992 - 期刊:
- 影响因子:2.4
- 作者:
B. Fajardo;Margaret Browning;David Fisher;J. Paton - 通讯作者:
J. Paton
Participation, development and tensions in New Zealand donor engagement with non-secular recipients: A case for recognising post-secularity in practice
新西兰捐助者与非世俗接受者交往中的参与、发展和紧张:在实践中认识后世俗性的一个案例
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Walter Lewthwaite;David Fisher;H. Rennie - 通讯作者:
H. Rennie
Strengthening Kazhdan’s property (T) by Bochner methods
通过 Bochner 方法增强 Kazhdan 的财产 (T)
- DOI:
10.1007/s10711-011-9686-9 - 发表时间:
2011 - 期刊:
- 影响因子:0.5
- 作者:
David Fisher;Theron Hitchman - 通讯作者:
Theron Hitchman
BASE DEFICIT DURING CITEIPC ARREST SECONDARY TO RESPIRATORY FAILURE IN IMMATURE PIGS
未成熟猪因呼吸衰竭在 CITEIPC 逮捕期间的基础缺陷
- DOI:
10.1203/00006450-198704010-00211 - 发表时间:
1987-04-01 - 期刊:
- 影响因子:3.100
- 作者:
Larry Jefferson;David Fisher;John Rosborough;Christopher Martin;Thomas Hansen - 通讯作者:
Thomas Hansen
David Fisher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Fisher', 18)}}的其他基金
The evolution and plasticity of social networks traits
社交网络特征的演变和可塑性
- 批准号:
NE/X013227/1 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Research Grant
New Analytic Techniques in Group Theory
群论中的新分析技术
- 批准号:
1607041 - 财政年份:2016
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
New analytic techniques in group theory
群论中的新分析技术
- 批准号:
1308291 - 财政年份:2013
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant
CAREER: New Analytic Techniques in Group Theory
职业:群论中的新分析技术
- 批准号:
0643546 - 财政年份:2007
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant
Group Actions, rigidity and geometry
群体行动、刚性和几何形状
- 批准号:
0541917 - 财政年份:2005
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Superrigidity, Actions on Manifolds and CAT(0) Geometry
超刚性、流形作用和 CAT(0) 几何
- 批准号:
0226121 - 财政年份:2002
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
- 批准号:
9902411 - 财政年份:1999
- 资助金额:
$ 3.5万 - 项目类别:
Fellowship Award
相似海外基金
Conference: Groups, Actions, and Geometries
会议:群体、行动和几何
- 批准号:
2309427 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Dynamical and descriptive aspects of groups and their actions
群体及其行为的动态和描述性方面
- 批准号:
2246684 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
- 批准号:
2247008 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Low dimensional topology, ordered groups and actions on 1-manifolds
低维拓扑、有序群和 1-流形上的动作
- 批准号:
RGPIN-2020-05343 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Canonical dimension and actions of finite groups on algebraic varieties
代数簇上有限群的规范维数和作用
- 批准号:
498240045 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Heisenberg Grants
Actions on Dimension Groups
对维度组的操作
- 批准号:
573358-2022 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
University Undergraduate Student Research Awards
Presentations of automorphism groups via actions on Outer Spaces
通过外层空间的作用展示自同构群
- 批准号:
2612236 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Studentship
Low dimensional topology, ordered groups and actions on 1-manifolds
低维拓扑、有序群和 1-流形上的动作
- 批准号:
RGPIN-2020-05343 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Galois Actions on Fundamental Groups and Number Theory
基本群和数论的伽罗瓦行动
- 批准号:
20J11018 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows