CAREER: Rigidity of Group Actions on Manifolds
职业:流形上群体行动的刚性
基本信息
- 批准号:1752675
- 负责人:
- 金额:$ 42.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Dynamical systems theory describes systems changing over time such as the motion of the planets in the solar system, the planetary weather, or the stock market; the theory provides tools to describe the expected long-term behavior of a system, quantify the complexity of a system, and provide notions of stability and instability in a system. Group actions arise naturally in many areas of mathematics. For instance, group actions describe the possible symmetries of a regular polygon or, more generally, the ways to cut a polygon into pieces and reassemble into the original polygon. The research project will apply tools from the theory of dynamical systems in order to study more general group actions on spaces. The goal of these projects is to establish certain rigidity results showing that all actions or invariant objects are of a certain prototypical form. During the project, the principal investigator will give summer courses on dynamical systems to high-school students and complete a number of expository writings on recent developments in rigidity of groups actions. The specific research projects include a number of projects studying actions of lattices in higher-rank Lie groups (including a number of conjectures in the Zimmer program) as well as group actions arising from geometric constructions such as actions on character varieties. In these projects, the principal investigator intends to use a number of tools from the theory of smooth dynamical systems including nonuniform hyperbolicity, entropy theory, and the theory of normal forms to study more general group actions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动力系统理论描述了系统随时间的变化,如太阳系中行星的运动、行星天气或股票市场;该理论提供了工具来描述系统的预期长期行为,量化系统的复杂性,并提供系统中稳定性和不稳定性的概念。群体行动在数学的许多领域中都是自然而然地出现的。例如,组动作描述了规则多边形可能的对称性,或者更一般地,描述了将多边形切成碎片并重新组合成原始多边形的方法。该研究项目将应用动力系统理论中的工具,以研究空间上更一般的群作用。这些项目的目标是建立一定的刚性结果,表明所有动作或不变对象都具有特定的原型形式。在项目期间,首席调查员将向高中生讲授动力系统的暑期课程,并完成一些关于群体行动刚性最新发展的说明性文章。具体的研究项目包括一些研究高阶李群中格的作用的项目(包括Zimmer程序中的一些猜想),以及由几何结构引起的群作用,如对特征簇的作用。在这些项目中,首席研究员打算使用光滑动力系统理论中的一些工具,包括非均匀双曲性、熵理论和范式理论来研究更一般的群体诉讼。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Brown其他文献
Messaging Matters: The Impact of Advising Micromessages on Student Affect and Behavior across Diverse University Campuses
消息传递很重要:微消息建议对不同大学校园学生的影响和行为的影响
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Tonya M. Buchanan;Aaron Brown;Patrizia Chirco;Danielle M. Klein;Ashley M. Purgason - 通讯作者:
Ashley M. Purgason
Locally Operated Cooperative Key Sharing (LOCKS)
本地操作的协作密钥共享 (LOCKS)
- DOI:
10.1109/iccnc.2017.7876154 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
M. Bierma;Aaron Brown;Troy DeLano;Thomas M. Kroeger;H. Poston - 通讯作者:
H. Poston
Studies in gastrointestinal allergy
胃肠道过敏研究
- DOI:
- 发表时间:
1939 - 期刊:
- 影响因子:0
- 作者:
I. Ehrenfeld;Aaron Brown;M. Sturtevant - 通讯作者:
M. Sturtevant
Virtually the Same: Comparing Physical and Virtual Testbeds
几乎相同:比较物理和虚拟测试台
- DOI:
10.1109/iccnc.2019.8685630 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
J. Crussell;Thomas M. Kroeger;Aaron Brown;C. Phillips - 通讯作者:
C. Phillips
DEPRESSION AND ANXIETY MODERATE CANNABIS USE DISORDER TREATMENT EFFECTS: A RANDOMIZED CLINICAL TRIAL WITH YOUNG ADULTS
抑郁和焦虑对中度大麻使用障碍治疗效果的影响:一项针对年轻人的随机临床试验
- DOI:
10.1016/j.drugalcdep.2024.112304 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:3.600
- 作者:
Michael Mason;Douglas Coatsworth;Nathaniel Riggs;Jeremy Mennis;Nikola Zaharakis;Michael Russell;Aaron Brown - 通讯作者:
Aaron Brown
Aaron Brown的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Brown', 18)}}的其他基金
Group Actions, Rigidity, and Invariant Measures
群体行动、刚性和不变措施
- 批准号:
2400191 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
CAREER: Rigidity of Group Actions on Manifolds
职业:流形上群体行动的刚性
- 批准号:
2020013 - 财政年份:2019
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
相似海外基金
Group Actions, Rigidity, and Invariant Measures
群体行动、刚性和不变措施
- 批准号:
2400191 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Rigidity of group topologies and universal minimal flows (C05)
组拓扑的刚性和通用最小流(C05)
- 批准号:
444035161 - 财政年份:2020
- 资助金额:
$ 42.5万 - 项目类别:
Collaborative Research Centres
CAREER: Rigidity of Group Actions on Manifolds
职业:流形上群体行动的刚性
- 批准号:
2020013 - 财政年份:2019
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
CAREER: Dynamical Rigidity Related to Group Actions and Arithmetics
职业:与群体行动和算术相关的动态刚性
- 批准号:
1753042 - 财政年份:2018
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
Rigidity in von Neumann Algebras: Connections and Applications to Orbit Equivalence, Geometric Group Theory, and Continuous Model Theory
冯·诺依曼代数中的刚性:与轨道等效、几何群论和连续模型理论的联系和应用
- 批准号:
1600688 - 财政年份:2016
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
Rigidity, Measured Group Theory, and Dynamics
刚性、测量群论和动力学
- 批准号:
1611765 - 财政年份:2016
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
Rigidity problem on group actions with an invariant geometric structure
具有不变几何结构的群动作的刚性问题
- 批准号:
26400085 - 财政年份:2014
- 资助金额:
$ 42.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on rigidity of foliations and group actions based on characteristic classes
基于特征类的叶状结构刚度和群作用研究
- 批准号:
26800047 - 财政年份:2014
- 资助金额:
$ 42.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Rigidity in von Neumann Algebras; Connections and Applications to Orbit Equivalence and Geometric Group Theory
冯·诺依曼代数中的刚性;
- 批准号:
1301370 - 财政年份:2013
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant