Geometry, Topology, and Rank One Lattices

几何、拓扑和一阶晶格

基本信息

  • 批准号:
    1906088
  • 负责人:
  • 金额:
    $ 20.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-15 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Lattices in Lie groups are a wide-sweeping generalization of the integers inside the real numbers. The deep connections between the integers and a broad range of mathematical areas from geometry to number theory have direct analogues for lattices in Lie groups, and the way in which lattices in Lie groups sit at the interface of so many fields has made them of fundamental importance since the late 19th century. The primary motivation for this project is to deepen our understanding of these connections. There is a special class of lattices that are called "arithmetic", where the connections to number theory are particularly strong, and this an overarching goal of this project is to use techniques from dynamics and geometry to understand when a lattice is arithmetic, and moreover deepen our understanding of the geometric consequences of arithmeticity. The project provides summer support for graduate students allowing them time for research and collaboration.More specifically, this project aims to understand the geometry and topology of locally symmetric spaces, particularly real and complex hyperbolic manifolds, inspired by the fundamental problems in low-dimensional topology and geometric group theory that have dominated the fields since the pivotal work of Thurston and Gromov. On the one hand, it is of significant interest to learn the extent to which the Gromov-Thurston program pushes into this more general setting. More importantly, the questions studied in dimensions 2 and 3 for the last forty years are closely related to classical problems about discrete subgroups of Lie groups, and real and complex hyperbolic lattices are precisely the cases where many of the basic questions remain open, e.g., Betti numbers and problems related to (non)arithmeticity. Particular problems to be studied include geometric characterizations of arithmeticity, analogues of the Margulis superrigidity theorem in rank one, and understanding complex hyperbolic lattices using techniques from algebraic geometry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
李群中的格是真实的数中整数的广泛推广。整数与从几何到数论的广泛数学领域之间的深刻联系与李群中的格有着直接的相似之处,李群中的格处于如此多的领域的界面,这使得它们自世纪以来具有根本的重要性。这个项目的主要动机是加深我们对这些联系的理解。有一类特殊的格被称为“算术”,与数论的联系特别强,这个项目的首要目标是使用动力学和几何学的技术来理解格何时是算术的,并加深我们对算术性的几何后果的理解。该项目为研究生提供暑期支持,让他们有时间进行研究和合作。更具体地说,该项目旨在了解局部对称空间的几何和拓扑,特别是真实的和复双曲流形,灵感来自低维拓扑和几何群论的基本问题,这些问题自Thurston和Gromov的关键工作以来一直主导着该领域。一方面,了解Gromov-Thurston程序在多大程度上推动了这一更一般的设置是非常有趣的。更重要的是,在过去的四十年中,在2维和3维中研究的问题与李群的离散子群的经典问题密切相关,而真实的和复双曲格正是许多基本问题仍然开放的情况,例如,贝蒂数和与(非)算术性有关的问题。 特别是要研究的问题包括算术性的几何特征,类似物的马古利斯超刚性定理在秩一,并理解复杂的双曲格使用技术从代数几何。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Azumaya algebras and canonical components
Azumaya 代数和规范分量
Arithmeticity, superrigidity, and totally geodesic submanifolds
算术性、超刚性和完全测地线子流形
  • DOI:
    10.4007/annals.2021.193.3.4
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Bader, Uri;Fisher, David;Miller, Nicholas;Stover, Matthew
  • 通讯作者:
    Stover, Matthew
Residually Finite Lattices in PU(2,1)˜ and Fundamental Groups of Smooth Projective Surfaces
PU(2,1)Ë中的剩余有限格子和光滑射影面的基本群
  • DOI:
    10.1307/mmj/20217215
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Stover, Matthew;Toledo, Domingo
  • 通讯作者:
    Toledo, Domingo
Residual finiteness for central extensions of lattices in $\operatorname{PU}(n,1)$ and negatively curved projective varieties
$operatorname{PU}(n,1)$ 中晶格中心扩张的剩余有限性和负曲线射影簇
Finiteness of maximal geodesic submanifolds in hyperbolic hybrids
双曲杂化中最大测地线子流形的有限性
  • DOI:
    10.4171/jems/1077
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Fisher, David;Lafont, Jean-François;Miller, Nicholas;Stover, Matthew
  • 通讯作者:
    Stover, Matthew
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Stover其他文献

Classification and arithmeticity of toroidal compactifications with 3 x c 2 D x c 21 D 3
3 x c 2 D x c 21 D 3 环形致密化的分类和算术
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Luca;D. I. C. E. M. Atthew;S. Tover;Di Cerbo;Matthew Stover
  • 通讯作者:
    Matthew Stover
Cusps of Picard modular surfaces
皮卡德模面尖点
  • DOI:
    10.1007/s10711-011-9608-x
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Matthew Stover
  • 通讯作者:
    Matthew Stover
Fuchsian subgroups of lattices acting on hermitian symmetric spaces
作用于厄米对称空间的 Fuchsian 晶格子群
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Chinburg;Matthew Stover
  • 通讯作者:
    Matthew Stover
Constructing Geometrically Equivalent Hyperbolic Orbifolds
构造几何等价双曲轨道折叠
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. McReynolds;Jeffrey S. Meyer;Matthew Stover
  • 通讯作者:
    Matthew Stover
Hurwitz ball quotients
赫尔维茨球商
  • DOI:
    10.1007/s00209-014-1306-6
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Matthew Stover
  • 通讯作者:
    Matthew Stover

Matthew Stover的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Stover', 18)}}的其他基金

Geodesic Submanifolds, Rigidity, and Other New Phenomena in Rank 1
测地线子流形、刚度和其他 1 级新现象
  • 批准号:
    2203555
  • 财政年份:
    2022
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Continuing Grant
Temple University Graduate Student Conference in Algebra, Geometry, and Topology
天普大学代数、几何和拓扑研究生会议
  • 批准号:
    1856193
  • 财政年份:
    2019
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Continuing Grant
Temple University Graduate Student Conference in Algebra, Geometry, and Topology
天普大学代数、几何和拓扑研究生会议
  • 批准号:
    1826362
  • 财政年份:
    2018
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Standard Grant
Geometry and arithmetic of locally symmetric spaces
局部对称空间的几何与算术
  • 批准号:
    1306401
  • 财政年份:
    2013
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Standard Grant
Geometry and arithmetic of locally symmetric spaces
局部对称空间的几何与算术
  • 批准号:
    1361000
  • 财政年份:
    2013
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
  • 批准号:
    2348830
  • 财政年份:
    2024
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Standard Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
  • 批准号:
    2400006
  • 财政年份:
    2024
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Standard Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
  • 批准号:
    2340394
  • 财政年份:
    2024
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Continuing Grant
Conference: Midwest Topology Seminar
会议:中西部拓扑研讨会
  • 批准号:
    2341204
  • 财政年份:
    2024
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Standard Grant
Topology in many-body quantum systems in and out of equilibrium
处于平衡状态和非平衡状态的多体量子系统中的拓扑
  • 批准号:
    2300172
  • 财政年份:
    2024
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Continuing Grant
Algebraic Structures in String Topology
弦拓扑中的代数结构
  • 批准号:
    2405405
  • 财政年份:
    2024
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Standard Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
  • 批准号:
    2349401
  • 财政年份:
    2024
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
  • 批准号:
    2340465
  • 财政年份:
    2024
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Continuing Grant
CAREER: Elucidating the Impact of Side-Chain Topology on the Structure-Property Relationship in Bottlebrush Polymers
职业:阐明侧链拓扑对洗瓶刷聚合物结构-性能关系的影响
  • 批准号:
    2340664
  • 财政年份:
    2024
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了