Network Dynamics and Computational Mechanisms of Rule Learning II
规则学习的网络动力学和计算机制II
基本信息
- 批准号:237823417
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2013
- 资助国家:德国
- 起止时间:2012-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Animal learning is often conceived as a gradual process that develops over many trials and involves the incremental strengthening of associations among stimuli, responses, and outcomes, a view deeply rooted in behaviorist theory and inherent in most neural network learning models. However, in recent years there is mounting evidence that animal learning, even in apparently simple conditioning tasks, is better understood as an active inference and decision making process. This view comes from careful statistical examination of the individual, trial-by-trial learning progress, and from the observation of sudden transitions among neural ensemble states coding for different behavioral rules in prefrontal cortex (PFC) which accompany the learning process. In order to address conflicting hypotheses regarding the computational meaning of these neural ensemble transitions, and of the role of the dopaminergic system within them, we had started multiple single-unit recordings from the rat PFC during a newly designed probabilistic rule-shift task, and the effects of amphetamine or local optogenetic stimulation of dopamine release during this task. Preliminary results suggest that sudden neural transitions might reflect a change in choice criterion rather than other behavioral processes (like uncertainty), and that dopamine may also primarily affect the choice process rather than value updating. Building on these results and other observations, here we aim to further validate and extend our current understanding along three major directions, using a combination of multi-tetrode recordings, optogenetic manipulations, and advanced time series and computational model based analysis of the learning process:1) We will dissect in more detail the task periods during which dopamine input is most crucial, how dopamine neuron activity is coordinated with PFC activity as the task progresses, and how it impacts on various subcomponents of rule learning like action selection and value updating;2) we will address in more detail specific hypotheses regarding the neuro-dynamical mechanisms underlying the active inference process in various subdivisions of the rat PFC;3) through variations of the basic behavioral task design we will explore higher-level concepts supported by current observations like learning as structural inference and active information seeking.Thus, we will continue toward our goal of a comprehensive understanding of rule learning as active inference at the neurophysiological, neuro-dynamical, and neuro-computational levels.
动物学习通常被认为是一个渐进的过程,在许多试验中发展,并涉及刺激,反应和结果之间的关联的逐步加强,这一观点深深植根于行为主义理论,并在大多数神经网络学习模型中固有。然而,近年来有越来越多的证据表明,动物学习,即使在表面上简单的条件反射任务,更好地理解为一个积极的推理和决策过程。这种观点来自于对个体的仔细统计检查,一次又一次的学习过程,以及对伴随学习过程的前额叶皮层(PFC)中编码不同行为规则的神经集合状态之间的突然转变的观察。 为了解决这些神经系综转换的计算意义的相互矛盾的假设,以及多巴胺能系统在其中的作用,我们已经开始了多个单单元记录从大鼠PFC在一个新设计的概率规则转换任务,和安非他明或局部光遗传刺激的影响多巴胺释放在这个任务。初步结果表明,突然的神经转变可能反映了选择标准的变化,而不是其他行为过程(如不确定性),多巴胺也可能主要影响选择过程,而不是价值更新。基于这些结果和其他观察结果,我们的目标是进一步验证和扩展我们目前的理解沿着三个主要方向,使用多四极记录,光遗传学操作和先进的时间序列和基于计算模型的学习过程分析的组合:1)我们将更详细地剖析多巴胺输入最关键的任务期,随着任务的进展,多巴胺神经元活动如何与PFC活动协调,以及它如何影响规则学习的各个子成分,如动作选择和值更新;2)我们将更详细地讨论有关大鼠PFC各个子区域中主动推理过程的神经动力学机制的具体假设; 3)通过基本行为任务设计的变化,我们将探索由当前观察支持的更高层次的概念,如学习作为结构推理和主动信息寻求,从而我们将继续朝着我们的目标,即在神经生理学,神经动力学和神经计算水平上全面理解规则学习作为主动推理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Florian Bähner其他文献
Dr. Florian Bähner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dr. Florian Bähner', 18)}}的其他基金
Ventral striatal processing of prefrontal inputs and phasic dopamine during rule switching
规则切换过程中前额叶输入和阶段性多巴胺的腹侧纹状体处理
- 批准号:
265323688 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Computational methods to predict gene regulatory network dynamics and cell state transitions
预测基因调控网络动态和细胞状态转变的计算方法
- 批准号:
10490309 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Computational methods to predict gene regulatory network dynamics and cell state transitions
预测基因调控网络动态和细胞状态转变的计算方法
- 批准号:
10688241 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Computational methods to predict gene regulatory network dynamics and cell state transitions
预测基因调控网络动态和细胞状态转变的计算方法
- 批准号:
10276680 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Using systematic computational approaches to elucidate the molecular and network dynamics underlying a circadian clock
使用系统计算方法来阐明生物钟背后的分子和网络动力学
- 批准号:
1953402 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Computational Inference of Regulatory Network Dynamics on Cell Lineages
细胞谱系调控网络动力学的计算推断
- 批准号:
9979901 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Computational Methods for Studying Heterogeneous Pulse-Coupled Network Dynamics
研究异构脉冲耦合网络动力学的计算方法
- 批准号:
0914827 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
Computational Modelling of Neural Network Growth and Dynamics
神经网络增长和动态的计算建模
- 批准号:
EP/G03950X/1 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grant
COMPUTATIONAL SYMBOLIC MODELS OF NEURAL NETWORK DYNAMICS
神经网络动力学的计算符号模型
- 批准号:
3387129 - 财政年份:1991
- 资助金额:
-- - 项目类别:
COMPUTATIONAL SYMBOLIC MODELS OF NEURAL NETWORK DYNAMICS
神经网络动力学的计算符号模型
- 批准号:
2247523 - 财政年份:1991
- 资助金额:
-- - 项目类别:
COMPUTATIONAL SYMBOLIC MODELS OF NEURAL NETWORK DYNAMICS
神经网络动力学的计算符号模型
- 批准号:
3387130 - 财政年份:1991
- 资助金额:
-- - 项目类别:














{{item.name}}会员




