Computational Inference of Regulatory Network Dynamics on Cell Lineages
细胞谱系调控网络动力学的计算推断
基本信息
- 批准号:9979901
- 负责人:
- 金额:$ 30.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-16 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAlgorithmsBindingBiological ProcessCell Differentiation processCell LineCell LineageCell modelCell physiologyCellsChromatinComplexComputing MethodologiesCorrelation StudiesDNADataData SetDependenceDevelopmentDiseaseDisease modelDistalEpigenetic ProcessGene ExpressionGene Expression RegulationGenerationsGenesGeneticGenetic TranscriptionGenomeGenomicsHealthHistonesHumanMaintenanceMammalian CellMeasuresMessenger RNAMethodsModelingOutputPatientsPlayPost-Translational Protein ProcessingProcessRegenerative MedicineRegulationRegulator GenesResearch PersonnelResourcesRoleSample SizeSamplingSignaling ProteinSoftware ToolsSpecific qualifier valueStructureSystemTestingTrainingUncertaintyUpdateValidationcell fate specificationcell typechromatin remodelingcomputerized toolsepigenomeexperimental studygenetic regulatory proteingenome-widegenomic datahuman diseasehuman modelinnovationlearning networklearning strategymachine learning methodmulti-task learningnovelpredictive modelingpredictive testprogramspromoterreconstructionsupervised learningtooltranscription factortranscriptome
项目摘要
Regulatory networks that control which genes are expressed when, are critical players in the maintenance and
transitions of different cell states. In mammalian systems such networks are established by a complex interplay
of thousands of regulatory proteins such as transcription factors, chromatin remodelers and signaling proteins,
histone post-translational modifications and three-dimensional organization of the genome. Hence, the
identification of genome-scale regulatory networks and their changes remains a computational and
experimental challenge, especially for rare and novel cell types. Through recent efforts of consortia
projects we now have rich datasets measuring multiple components of the regulation machinery in model cell
lines. These data enable the creation of a more complete regulatory network for these cell lines. Can we use
this information to identify networks in new cell types where measuring only a few components of the
regulation machinery is possible (e.g. the transcriptome)? Can we leverage more complete regulatory networks
to predict new cell types, and to predict the effect of network perturbations to cellular state? To tackle these
questions, in this proposal we will develop innovative network reconstruction methods to identify
regulatory networks in novel and rare cell types by leveraging their relationships to well-studied cell
types, as well as to each other. Our methods will use the framework of non-stationary graphical models to
represent cell type-specific regulatory networks and will use multi-task learning to incorporate shared
information between cell types in a lineage. Methods in Aim 1 will infer modular gene regulatory networks for
each cell type and additionally refine an existing incomplete or uncertain lineage structure. Methods in Aim 2
will identify cell type-specific directed dependencies among chromatin state and transcription factors and how
they impact target gene expression through proximal and long-range regulation. Our methods will be applied to
two cell-fate specification problems: cellular reprogramming and multi-cell lineage forward differentiation. In
cellular reprogramming, regulators and subnetworks hindering reprogramming efficiency will be predicted and
tested using genetic perturbation experiments. In forward differentiation, regulatory network changes that drive
alternate lineages will be identified and tested. Successful completion of this project will provide two broadly
applicable software tools that will enable researchers to (i) accurately identify regulatory networks and their
changes between different cell states in complex cell lineages, (ii) examine interactions among multiple levels
of regulation and their impact on cell type-specific gene expression, and (iii) efficiently identify the most
upstream regulatory genes and subnetworks that change cellular states. Software tools from this project will be
made available and will be broadly applicable to diverse types of dynamic biological processes in development
and disease.
控制哪些基因何时表达的调控网络是维持和调节基因表达的关键因素。
不同细胞状态的转换。在哺乳动物系统中,这种网络是通过复杂的相互作用建立的
数以千计的调节蛋白,如转录因子,染色质重塑和信号蛋白,
组蛋白翻译后修饰和基因组的三维组织。所以
识别基因组规模的调控网络及其变化仍然是一个计算和
实验挑战,特别是对于罕见和新的细胞类型。通过最近财团的努力,
项目,我们现在有丰富的数据集测量模型细胞中调节机制的多个组件
线这些数据使得能够为这些细胞系创建更完整的调控网络。我们能用
该信息用于识别新小区类型中的网络,其中仅测量小区的几个分量。
调节机制是可能的(例如转录组)?我们能否利用更完善的监管网络
来预测新的细胞类型,以及预测网络扰动对细胞状态的影响?解决这些
问题,在本提案中,我们将开发创新的网络重建方法,以确定
在新的和罕见的细胞类型的调控网络,通过利用它们的关系,充分研究细胞
类型,以及彼此。我们的方法将使用非静态图形模型的框架,
代表细胞类型特定的调节网络,并将使用多任务学习,
细胞类型之间的信息。目的1中的方法将推断模块化基因调控网络,
每种细胞类型,并另外细化现有的不完整或不确定的谱系结构。目标2中的方法
将确定染色质状态和转录因子之间的细胞类型特异性定向依赖性,以及如何
它们通过近端和远端调节影响靶基因表达。我们的方法将应用于
两个细胞命运特化问题:细胞重编程和多细胞谱系正向分化。在
将预测阻碍重编程效率的细胞重编程、调节器和子网络,
用基因扰动实验来测试在向前分化中,监管网络的变化推动了
将鉴定和测试替代血统。该项目的成功完成将提供两个广泛的
适用的软件工具,使研究人员能够(i)准确地识别监管网络及其
复杂细胞谱系中不同细胞状态之间的变化,(ii)检查多个水平之间的相互作用
调控及其对细胞类型特异性基因表达的影响,以及(iii)有效地识别最
上游调控基因和改变细胞状态的子网络。该项目的软件工具将
提供并将广泛适用于发展中的各种类型的动态生物过程
和疾病
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A prior-based integrative framework for functional transcriptional regulatory network inference.
用于功能转录调控网络推理的基于先验的综合框架。
- DOI:10.1093/nar/gkw1160
- 发表时间:2017
- 期刊:
- 影响因子:14.9
- 作者:Siahpirani,AlirezaF;Roy,Sushmita
- 通讯作者:Roy,Sushmita
Integrative Approaches for Inference of Genome-Scale Gene Regulatory Networks.
基因组规模基因调控网络推理的综合方法。
- DOI:10.1007/978-1-4939-8882-2_7
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Siahpirani,AlirezaFotuhi;Chasman,Deborah;Roy,Sushmita
- 通讯作者:Roy,Sushmita
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sushmita Roy其他文献
Sushmita Roy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sushmita Roy', 18)}}的其他基金
Leveraging multi-species single cell omic datasets to study the evolution of cell type-specific gene regulatory networks
利用多物种单细胞组学数据集研究细胞类型特异性基因调控网络的进化
- 批准号:
10710055 - 财政年份:2022
- 资助金额:
$ 30.32万 - 项目类别:
Defining gene regulatory networks controlling cell fate
定义控制细胞命运的基因调控网络
- 批准号:
10669280 - 财政年份:2022
- 资助金额:
$ 30.32万 - 项目类别:
Leveraging multi-species single cell omic datasets to study the evolution of cell type-specific gene regulatory networks
利用多物种单细胞组学数据集研究细胞类型特异性基因调控网络的进化
- 批准号:
10595349 - 财政年份:2022
- 资助金额:
$ 30.32万 - 项目类别:
Defining gene regulatory networks controlling cell fate
定义控制细胞命运的基因调控网络
- 批准号:
10530982 - 财政年份:2022
- 资助金额:
$ 30.32万 - 项目类别:
Computational approaches for comparative regulatory genomics to decipher long-range gene regulation
比较调控基因组学的计算方法来破译远程基因调控
- 批准号:
10208923 - 财政年份:2018
- 资助金额:
$ 30.32万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 30.32万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 30.32万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 30.32万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 30.32万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 30.32万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 30.32万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 30.32万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 30.32万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 30.32万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 30.32万 - 项目类别:
Research Grant














{{item.name}}会员




