Collaborative Research: Leveraging a Solvent Toolkit for Doping and Characterizing Hybrid Perovskite Solar Cells

合作研究:利用溶剂工具包进行混合钙钛矿太阳能电池的掺杂和表征

基本信息

  • 批准号:
    1906492
  • 负责人:
  • 金额:
    $ 20.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Nontechnical:Solar cells are instrumental to efforts to develop environmentally friendly power sources. Solar cells based on hybrid organic/inorganic materials have achieved performance levels comparable to commercial devices. Properties such as low-cost processing and flexibility make them an attractive alternative to silicon. However, improving the performance of hybrid solar cells has been limited by current fabrication and characterization strategies. The PIs have shown that these materials can be electrochemically doped by a liquid without dissolving them. This liquid approach yields a toolkit that can be used to measure and enhance intrinsic electrical properties. This liquid toolkit will be used to modify and enhance hybrid solar cells. The PIs will identify promising materials combinations for hybrid solar cells by computer modeling. Thin films will be prepared, characterized, and optimized for solar cells. Hybrid solar cells will be fabricated and characterized for solar power conversion and stability. Additional studies will identify causes of degradation. These efforts will further the potential of hybrid solar cells to transform the solar energy landscape. The proposed effort will involve education and outreach activities to broaden participation of underrepresented groups, engage the public, and train the next generation of scientists and engineers in renewable energy. Texas State University is a Hispanic Serving Institution. The proposed project will leverage this talent pool to increase diversity in research and STEM education.Technical:The PIs will electrically dope and characterize hybrid perovskite (HP) thin films and solar cell devices using a recently-developed solvent toolkit. This solvent toolkit is based on a hydrofluoroether (HFE) solvent system that is nondestructive to HPs and permits electrochemical characterization and modification of HP thin films. To produce p and n doped devices of favorable electrical and optical performance, the project team will utilize three approaches to identify optimal device compositions from the wide range of possible devices afforded by the solvent toolkit technique. To characterize the broad potential experimental landscape, numerical modeling with density functional theory (DFT) will be performed, identifying favorable doping mixtures. Subsequently, electrochemical study of thin HP films in HFE electrolytes will be performed to experimentally achieve doping effects such as improved conductivity and new energy levels. Finally, HP solar cells will be fabricated from doping strategies motivated by electrochemical study, and carefully characterized for efficiency, structure and stability. More specifically, we will utilize DFT with Hubbard correction and spin-orbital coupling to investigate the effects of different ionic dopants on the band structure, bandgap, doping energy levels, loss of inversion symmetry, Rashba effect, spin texture, electron-phonon coupling, and quantum confinement of HP materials. Electrochemical (EC) doping will be accomplished in HFE solvents with chronopotentiometry and chronoamperometry and characterized with cyclic voltammetry, square wave voltammetry, and electrochemical impedance spectroscopy with custom multiplexed chips. HP solar cell devices will be fabricated from films doped by HFE processing and tested for efficiency and lifetime metrics. We will subsequently investigate how the EC doping of HP films affects device performance and stability while the device is being stressed with light and temperature cycles. We will correlate changes in HP-PV device parameters (power conversion efficiency, short-circuit current, open-circuit voltage, filling factor, hysteresis, etc.) with structural, chemical, and optical properties as the device undergoes controlled aging in the air-free atmosphere.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性:太阳能电池有助于开发环保电源的努力。基于混合有机/无机材料的太阳能电池已经达到了与商业设备相当的性能水平。低成本加工和灵活性等特性使它们成为硅的有吸引力替代品。但是,改善混合太阳能电池的性能已受到当前的制造和表征策略的限制。 PI表明,这些材料可以用液体掺杂而不会溶解它们。这种液体方法产生的工具包可用于测量和增强内在的电气特性。该液体工具包将用于修改和增强杂交太阳能电池。 PI将通过计算机建模来确定混合太阳能电池的有希望的材料组合。薄膜将用于太阳能电池制备,表征和优化。将制造和表征混合太阳能电池,以实现太阳能转换和稳定性。其他研究将确定降解的​​原因。这些努力将进一步推动混合太阳能电池转化太阳能景观的潜力。拟议的努力将涉及教育和外展活动,以扩大代表性不足的群体的参与,参与公众的参与,并培训下一代科学家和工程师的可再生能源。德克萨斯州立大学是西班牙裔服务机构。拟议的项目将利用这一人才库来增加研究和STEM教育的多样性。技术:PIS将使用最近开发的溶剂工具包进行电力并表征混合钙钛矿(HP)薄膜(HP)薄膜和太阳能电池设备。该溶剂工具包基于氢氟(HFE)溶剂系统,该系统对HPS无损,允许HP薄膜的电化学表征和修饰。为了生产具有有利电气和光学性能的P和N掺杂设备,项目团队将利用三种方法来识别溶剂工具包提供的广泛可能设备的最佳设备组合物。为了表征广泛的潜在实验景观,将进行具有密度功能理论(DFT)的数值建模,从而识别有利的掺杂混合物。随后,将对HFE电解质中的薄HP膜进行电化学研究,以实验实现掺杂效应,例如改善的电导率和新的能级。最后,HP太阳能电池将从电化学研究动机的兴奋剂策略中制造,并仔细地以效率,结构和稳定性为特征。更具体地说,我们将使用Hubbard校正和自旋轨道耦合使用DFT来研究不同离子掺杂剂对频带结构,带隙,掺杂能级,反转对称性,RashBA效应,自旋纹理,旋转纹理,电子 - phonon-Phonon偶联以及HP材料的量化量的影响。电化学(EC)掺杂将在具有计时元素计量和计时仪的HFE溶剂中完成,并以环状伏安法,方波伏安法和具有自定义多路复用芯片的电化学含量光谱谱图进行表征。 HP太阳能电池设备将由HFE加工掺杂并测试效率和寿命指标的膜制造。随后,我们将研究HP膜的EC掺杂如何影响设备的性能和稳定性,而设备则用光和温度循环压力。我们将将HP-PV设备参数的变化(功率转换效率,短路电流,开路电压,填充因子,滞后等)与结构,化学和光学特性相关联,因为该设备经历了无空气中的无空气中的经历。这些奖项通过评估NSF的范围和良好的依据。 标准。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Temperature‐ and Bias‐Dependent Degradation and Regeneration of Perovskite Solar Cells with Organic and Inorganic Hole Transport Layers
  • DOI:
    10.1002/pssa.202000721
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Swartz;N. Khakurel;S. Najar;M. I. Hossain;A. Zakhidov
  • 通讯作者:
    C. Swartz;N. Khakurel;S. Najar;M. I. Hossain;A. Zakhidov
Slot-die coating of formamidinium-cesium mixed halide perovskites in ambient conditions with FAAc additive
  • DOI:
    10.1557/s43579-024-00522-x
  • 发表时间:
    2024-02
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    N. Khakurel;Drew Amyx;Maggie Yihong Chen;Yoichi Miyahara;W. Geerts
  • 通讯作者:
    N. Khakurel;Drew Amyx;Maggie Yihong Chen;Yoichi Miyahara;W. Geerts
Fabricate anti-solvent free tin-lead based perovskite solar cells with MAAc additives
Determining the refractive index and the dielectric constant of PPDT2FBT thin film using spectroscopic ellipsometry
使用光谱椭圆光度法测定 PPDT2FBT 薄膜的折射率和介电常数
  • DOI:
    10.1016/j.optmat.2020.110445
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Howlader, Chandan;Hasan, Mehedhi;Zakhidov, Alex;Chen, Maggie Yihong
  • 通讯作者:
    Chen, Maggie Yihong
Electrochemical characterization of halide perovskites: Stability & doping
  • DOI:
    10.1016/j.mtadv.2022.100213
  • 发表时间:
    2022-02-01
  • 期刊:
  • 影响因子:
    10
  • 作者:
    Jha, Sauraj;Hasan, Mehedhi;Slinker, Jason D.
  • 通讯作者:
    Slinker, Jason D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wilhelmus Geerts其他文献

Mechanical Properties of Re-Extruded SrFe12O19(OP-71)/PA12 Filaments via Twin-Screw Extrusion for Fused Filament Fabrication
通过双螺杆挤出熔丝制造再挤压 SrFe12O19(OP-71)/PA12 丝的机械性能
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Camila Belduque;Tanjina Ahmed;Wilhelmus Geerts;Subash Panta;Harrison Thramann, Liam Omer;Jitendra Tate
  • 通讯作者:
    Jitendra Tate

Wilhelmus Geerts的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wilhelmus Geerts', 18)}}的其他基金

MRI: Development of Full Vector Vibrating Sample Magnetometry for Materials Research and Education
MRI:用于材料研究和教育的全矢量振动样品磁强计的开发
  • 批准号:
    2216440
  • 财政年份:
    2022
  • 资助金额:
    $ 20.05万
  • 项目类别:
    Standard Grant
MRI: Acquisition of Vibrating Sample Magnetometer for Materials Research and Education
MRI:购买振动样品磁力计用于材料研究和教育
  • 批准号:
    1726970
  • 财政年份:
    2017
  • 资助金额:
    $ 20.05万
  • 项目类别:
    Standard Grant
MRI: Development of a Complex Topography Photolithography Tool for Micro-Patterning on Non-Flat Substrates.
MRI:开发用于在非平面基板上进行微图案化的复杂形貌光刻工具。
  • 批准号:
    0923506
  • 财政年份:
    2009
  • 资助金额:
    $ 20.05万
  • 项目类别:
    Standard Grant

相似国自然基金

肠出血性大肠杆菌利用sRNA感应肠道环境信号、提高体内致病能力的分子机制的研究
  • 批准号:
    82372267
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
稻米镁元素积累新主效QTL克隆和功能研究及其育种利用
  • 批准号:
    32372095
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
利用费米能区重离子核反应研究热核物质中11B和11C的集团性质
  • 批准号:
    12365018
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
基于生境数量假说的喀斯特山地森林景观异质性对中小型兽类生境利用影响研究
  • 批准号:
    32360333
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
利用海南废弃椰子壳设计制备BCN多孔材料及其吸附重金属离子的研究
  • 批准号:
    52362040
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307222
  • 财政年份:
    2024
  • 资助金额:
    $ 20.05万
  • 项目类别:
    Standard Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307223
  • 财政年份:
    2024
  • 资助金额:
    $ 20.05万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312886
  • 财政年份:
    2023
  • 资助金额:
    $ 20.05万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312884
  • 财政年份:
    2023
  • 资助金额:
    $ 20.05万
  • 项目类别:
    Standard Grant
Collaborative Research: Leveraging Crowd-AI Teams for Scalable Novelty Ratings of Heterogeneous Design Representations
协作研究:利用群体人工智能团队对异构设计表示进行可扩展的新颖性评级
  • 批准号:
    2231254
  • 财政年份:
    2023
  • 资助金额:
    $ 20.05万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了