Collaborative Research: Leveraging a Solvent Toolkit for Doping and Characterizing Hybrid Perovskite Solar Cells
合作研究:利用溶剂工具包进行混合钙钛矿太阳能电池的掺杂和表征
基本信息
- 批准号:1906492
- 负责人:
- 金额:$ 20.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical:Solar cells are instrumental to efforts to develop environmentally friendly power sources. Solar cells based on hybrid organic/inorganic materials have achieved performance levels comparable to commercial devices. Properties such as low-cost processing and flexibility make them an attractive alternative to silicon. However, improving the performance of hybrid solar cells has been limited by current fabrication and characterization strategies. The PIs have shown that these materials can be electrochemically doped by a liquid without dissolving them. This liquid approach yields a toolkit that can be used to measure and enhance intrinsic electrical properties. This liquid toolkit will be used to modify and enhance hybrid solar cells. The PIs will identify promising materials combinations for hybrid solar cells by computer modeling. Thin films will be prepared, characterized, and optimized for solar cells. Hybrid solar cells will be fabricated and characterized for solar power conversion and stability. Additional studies will identify causes of degradation. These efforts will further the potential of hybrid solar cells to transform the solar energy landscape. The proposed effort will involve education and outreach activities to broaden participation of underrepresented groups, engage the public, and train the next generation of scientists and engineers in renewable energy. Texas State University is a Hispanic Serving Institution. The proposed project will leverage this talent pool to increase diversity in research and STEM education.Technical:The PIs will electrically dope and characterize hybrid perovskite (HP) thin films and solar cell devices using a recently-developed solvent toolkit. This solvent toolkit is based on a hydrofluoroether (HFE) solvent system that is nondestructive to HPs and permits electrochemical characterization and modification of HP thin films. To produce p and n doped devices of favorable electrical and optical performance, the project team will utilize three approaches to identify optimal device compositions from the wide range of possible devices afforded by the solvent toolkit technique. To characterize the broad potential experimental landscape, numerical modeling with density functional theory (DFT) will be performed, identifying favorable doping mixtures. Subsequently, electrochemical study of thin HP films in HFE electrolytes will be performed to experimentally achieve doping effects such as improved conductivity and new energy levels. Finally, HP solar cells will be fabricated from doping strategies motivated by electrochemical study, and carefully characterized for efficiency, structure and stability. More specifically, we will utilize DFT with Hubbard correction and spin-orbital coupling to investigate the effects of different ionic dopants on the band structure, bandgap, doping energy levels, loss of inversion symmetry, Rashba effect, spin texture, electron-phonon coupling, and quantum confinement of HP materials. Electrochemical (EC) doping will be accomplished in HFE solvents with chronopotentiometry and chronoamperometry and characterized with cyclic voltammetry, square wave voltammetry, and electrochemical impedance spectroscopy with custom multiplexed chips. HP solar cell devices will be fabricated from films doped by HFE processing and tested for efficiency and lifetime metrics. We will subsequently investigate how the EC doping of HP films affects device performance and stability while the device is being stressed with light and temperature cycles. We will correlate changes in HP-PV device parameters (power conversion efficiency, short-circuit current, open-circuit voltage, filling factor, hysteresis, etc.) with structural, chemical, and optical properties as the device undergoes controlled aging in the air-free atmosphere.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性:太阳能电池有助于开发环境友好型电源。基于混合有机/无机材料的太阳能电池已经达到了与商业设备相当的性能水平。低成本加工和灵活性等特性使它们成为硅的有吸引力的替代品。然而,提高混合太阳能电池的性能受到当前制造和表征策略的限制。PI已经表明,这些材料可以通过液体进行电化学掺杂,而不会溶解它们。这种液体方法产生了一个工具包,可用于测量和增强固有的电性能。这种液体工具包将用于修改和增强混合太阳能电池。PI将通过计算机建模确定混合太阳能电池的有前途的材料组合。薄膜将被制备、表征和优化用于太阳能电池。混合太阳能电池将被制造和表征太阳能转换和稳定性。进一步的研究将查明退化的原因。这些努力将进一步发挥混合太阳能电池的潜力,改变太阳能的格局。拟议的努力将涉及教育和外联活动,以扩大代表性不足的群体的参与,吸引公众参与,并培训下一代可再生能源科学家和工程师。德克萨斯州立大学是一所西班牙裔服务机构。拟议的项目将利用这一人才库来增加研究和STEM教育的多样性。技术:PI将使用最近开发的溶剂工具包对混合钙钛矿(HP)薄膜和太阳能电池器件进行电掺杂和表征。该溶剂工具包基于氢氟醚(HFE)溶剂系统,该溶剂系统对HP无破坏性,并允许HP薄膜的电化学表征和改性。为了生产具有良好电学和光学性能的p和n掺杂器件,项目团队将利用三种方法从溶剂工具包技术提供的各种可能器件中确定最佳器件组成。为了表征广泛的潜在实验景观,将使用密度泛函理论(DFT)进行数值建模,确定有利的掺杂混合物。随后,将在HFE电解质中对HP薄膜进行电化学研究,以实验实现掺杂效果,例如改善导电性和新的能级。最后,HP太阳能电池将由电化学研究激发的掺杂策略制造,并仔细表征效率,结构和稳定性。更具体地说,我们将利用DFT与Hubbard校正和自旋-轨道耦合来研究不同离子掺杂剂对HP材料的能带结构、带隙、掺杂能级、反转对称性损失、Rashba效应、自旋织构、电子-声子耦合和量子限制的影响。电化学(EC)掺杂将在HFE溶剂中用计时电位法和计时电流法完成,并用循环伏安法、方波伏安法和电化学阻抗谱用定制的多路复用芯片进行表征。HP太阳能电池器件将由HFE工艺掺杂的薄膜制成,并测试效率和寿命指标。随后,我们将研究HP薄膜的EC掺杂如何影响器件的性能和稳定性,同时器件受到光和温度循环的压力。我们将关联HP-PV器件参数(功率转换效率、短路电流、开路电压、填充因子、滞后等)的变化。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Temperature‐ and Bias‐Dependent Degradation and Regeneration of Perovskite Solar Cells with Organic and Inorganic Hole Transport Layers
- DOI:10.1002/pssa.202000721
- 发表时间:2021-02
- 期刊:
- 影响因子:0
- 作者:C. Swartz;N. Khakurel;S. Najar;M. I. Hossain;A. Zakhidov
- 通讯作者:C. Swartz;N. Khakurel;S. Najar;M. I. Hossain;A. Zakhidov
Slot-die coating of formamidinium-cesium mixed halide perovskites in ambient conditions with FAAc additive
- DOI:10.1557/s43579-024-00522-x
- 发表时间:2024-02
- 期刊:
- 影响因子:1.9
- 作者:N. Khakurel;Drew Amyx;Maggie Yihong Chen;Yoichi Miyahara;W. Geerts
- 通讯作者:N. Khakurel;Drew Amyx;Maggie Yihong Chen;Yoichi Miyahara;W. Geerts
Determining the refractive index and the dielectric constant of PPDT2FBT thin film using spectroscopic ellipsometry
使用光谱椭圆光度法测定 PPDT2FBT 薄膜的折射率和介电常数
- DOI:10.1016/j.optmat.2020.110445
- 发表时间:2020
- 期刊:
- 影响因子:3.9
- 作者:Howlader, Chandan;Hasan, Mehedhi;Zakhidov, Alex;Chen, Maggie Yihong
- 通讯作者:Chen, Maggie Yihong
Pin-hole free MAPb0.75 Sn0.25 (I0.5 Br0.5 ) 3 films spin casted without anti- solvent by adding MAAc additive to perovskite ink
- DOI:10.24084/repqj20.284
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:C. Howlader;N. Khakurel;D. W. Amyx;W. Geerts;G. Gibson;M. Chen
- 通讯作者:C. Howlader;N. Khakurel;D. W. Amyx;W. Geerts;G. Gibson;M. Chen
Electrochemical characterization of halide perovskites: Stability & doping
- DOI:10.1016/j.mtadv.2022.100213
- 发表时间:2022-02-01
- 期刊:
- 影响因子:10
- 作者:Jha, Sauraj;Hasan, Mehedhi;Slinker, Jason D.
- 通讯作者:Slinker, Jason D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wilhelmus Geerts其他文献
Mechanical Properties of Re-Extruded SrFe12O19(OP-71)/PA12 Filaments via Twin-Screw Extrusion for Fused Filament Fabrication
通过双螺杆挤出熔丝制造再挤压 SrFe12O19(OP-71)/PA12 丝的机械性能
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Camila Belduque;Tanjina Ahmed;Wilhelmus Geerts;Subash Panta;Harrison Thramann, Liam Omer;Jitendra Tate - 通讯作者:
Jitendra Tate
Wilhelmus Geerts的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wilhelmus Geerts', 18)}}的其他基金
MRI: Development of Full Vector Vibrating Sample Magnetometry for Materials Research and Education
MRI:用于材料研究和教育的全矢量振动样品磁强计的开发
- 批准号:
2216440 - 财政年份:2022
- 资助金额:
$ 20.05万 - 项目类别:
Standard Grant
MRI: Acquisition of Vibrating Sample Magnetometer for Materials Research and Education
MRI:购买振动样品磁力计用于材料研究和教育
- 批准号:
1726970 - 财政年份:2017
- 资助金额:
$ 20.05万 - 项目类别:
Standard Grant
MRI: Development of a Complex Topography Photolithography Tool for Micro-Patterning on Non-Flat Substrates.
MRI:开发用于在非平面基板上进行微图案化的复杂形貌光刻工具。
- 批准号:
0923506 - 财政年份:2009
- 资助金额:
$ 20.05万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307222 - 财政年份:2024
- 资助金额:
$ 20.05万 - 项目类别:
Standard Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307223 - 财政年份:2024
- 资助金额:
$ 20.05万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312886 - 财政年份:2023
- 资助金额:
$ 20.05万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312884 - 财政年份:2023
- 资助金额:
$ 20.05万 - 项目类别:
Standard Grant
Collaborative Research: SPARC: Conducting Collaborative Research and Leveraging Resources to Advance Spatial Archaeometry
协作研究:SPARC:开展协作研究并利用资源推进空间考古学
- 批准号:
2309809 - 财政年份:2023
- 资助金额:
$ 20.05万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Understanding the Limitations of Wireless Network Security Designs Leveraging Wireless Properties: New Threats and Defenses in Practice
协作研究:SaTC:核心:小型:了解利用无线特性的无线网络安全设计的局限性:实践中的新威胁和防御
- 批准号:
2316720 - 财政年份:2023
- 资助金额:
$ 20.05万 - 项目类别:
Standard Grant
Collaborative Research: Leveraging Crowd-AI Teams for Scalable Novelty Ratings of Heterogeneous Design Representations
协作研究:利用群体人工智能团队对异构设计表示进行可扩展的新颖性评级
- 批准号:
2231254 - 财政年份:2023
- 资助金额:
$ 20.05万 - 项目类别:
Standard Grant
Collaborative Research: Leveraging Crowd-AI Teams for Scalable Novelty Ratings of Heterogeneous Design Representations
协作研究:利用群体人工智能团队对异构设计表示进行可扩展的新颖性评级
- 批准号:
2231261 - 财政年份:2023
- 资助金额:
$ 20.05万 - 项目类别:
Standard Grant
Collaborative Research: Promoting Children's Learning About Biological Variability by Leveraging Simple Card Games
合作研究:利用简单的纸牌游戏促进儿童了解生物变异性
- 批准号:
2300602 - 财政年份:2023
- 资助金额:
$ 20.05万 - 项目类别:
Continuing Grant
Collaborative Research: Towards Engaged, Personalized and Transferable Learning of Secure Programming by Leveraging Real-World Security Vulnerabilities
协作研究:利用现实世界的安全漏洞实现安全编程的参与式、个性化和可转移学习
- 批准号:
2235976 - 财政年份:2023
- 资助金额:
$ 20.05万 - 项目类别:
Standard Grant














{{item.name}}会员




