Transport in Quantum Spin Systems

量子自旋系统中的传输

基本信息

项目摘要

This award will fund research on topological phases of quantum matter, an interdisciplinary research area encompassing physics, computer science, and mathematics. A longstanding goal of this field is to produce novel materials with properties that are inherently immune to defects and noise. For example, they can carry electrical currents that do not decay in time and do not introduce errors in computations based on their topological properties, prioritizing them for the construction of quantum computers. Primary investigators (PIs) will develop a mathematical theory to understand the properties of such materials better, especially how to classify them and how to quantify their robustness to defects. The students working on the project will work alongside the PIs and gain expertise in the area. Developing a pool of young people proficient in quantum mechanics is a crucial part of quantum leap, and the award will help to build this pool through students' apprenticeships. Integer Quantum Hall effect is the primary example of a topological phase of matter. The mathematical theory of Quantum Hall effect in the absence of interactions was developed in the 1980s and 1990s. In recent years there was a strong push to develop the tools in the presence of interactions with the potential of extending the theory to topological phases requiring interactions. This award will merge two prominent directions in this research, many-body localization, and many-body index theory. PIs aim to show that the recently constructed indices are robust to many-body localization, both as mathematical and physical indices, which means that they are integer valued and constant in each topological phase and that they retain the meaning of electrical conductance. This task requires a better understanding of the transport properties of disordered many-body systems than is currently available. Study of these properties is another focus of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将资助量子物质拓扑相的研究,这是一个涵盖物理学,计算机科学和数学的跨学科研究领域。该领域的一个长期目标是生产具有固有的不受缺陷和噪声影响的特性的新型材料。例如,它们可以携带不会随时间衰减的电流,并且不会在基于其拓扑特性的计算中引入错误,从而优先考虑它们用于构建量子计算机。主要研究人员(PI)将开发一种数学理论,以更好地了解这些材料的特性,特别是如何对它们进行分类以及如何量化它们对缺陷的鲁棒性。参与该项目的学生将与PI一起工作,并获得该领域的专业知识。培养一批精通量子力学的年轻人是量子飞跃的关键部分,该奖项将有助于通过学生的学徒制建立这一人才库。量子霍尔效应是物质拓扑相的主要例子。在没有相互作用的情况下量子霍尔效应的数学理论是在20世纪80年代和90年代发展起来的。近年来,有一个强大的推动力,以发展的工具,在存在的相互作用与潜在的扩展理论的拓扑阶段需要相互作用。该奖项将合并两个突出的方向,在这项研究中,多体定位和多体指数理论。PI的目的是表明,最近构建的指数是强大的多体本地化,无论是作为数学和物理指标,这意味着他们是整数值和常数在每个拓扑阶段,他们保留电导的意义。这项任务需要更好地了解无序多体系统的输运性质比目前可用的。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Eigensystem Multiscale Analysis for the Anderson Model via the Wegner Estimate
通过韦格纳估计对安德森模型进行特征系统多尺度分析
  • DOI:
    10.1007/s00023-020-00926-0
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elgart, Alexander;Klein, Abel
  • 通讯作者:
    Klein, Abel
Exactness of Linear Response in the Quantum Hall Effect
  • DOI:
    10.1007/s00023-020-00989-z
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Bachmann;Wojciech De Roeck;M. Fraas;Markus Lange
  • 通讯作者:
    S. Bachmann;Wojciech De Roeck;M. Fraas;Markus Lange
On the absence of stationary currents
关于不存在稳态电流
  • DOI:
    10.1142/s0129055x20600119
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Bachmann, Sven;Fraas, Martin
  • 通讯作者:
    Fraas, Martin
Stability of invertible, frustration-free ground states against large perturbations
可逆、无挫败基态对抗大扰动的稳定性
  • DOI:
    10.22331/q-2022-09-08-793
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Bachmann, Sven;De Roeck, Wojciech;Donvil, Brecht;Fraas, Martin
  • 通讯作者:
    Fraas, Martin
Level spacing and Poisson statistics for continuum random Schrödinger operators
连续随机薛定谔算子的能级间距和泊松统计
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Elgart其他文献

Alexander Elgart的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Elgart', 18)}}的其他基金

Transport in Quantum Systems
量子系统中的传输
  • 批准号:
    2307093
  • 财政年份:
    2023
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Standard Grant
Early Career and Student Support for "Mathematical Physics at the Crossings" Conference
“十字路口的数学物理”会议的早期职业和学生支持
  • 批准号:
    1841860
  • 财政年份:
    2019
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Quantum magnetic and thermal transport by pi-electron spin
π电子自旋的量子磁和热传输
  • 批准号:
    23K17906
  • 财政年份:
    2023
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Topological quantum transport properties in spin-valley locked Dirac semimetals
自旋谷锁定狄拉克半金属的拓扑量子输运特性
  • 批准号:
    2211327
  • 财政年份:
    2022
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Continuing Grant
CAREER: Understanding the Size Effects on Spin-mediated Thermal Transport in Nanostructured Quantum Magnets
职业:了解纳米结构量子磁体中自旋介导的热传输的尺寸效应
  • 批准号:
    2144328
  • 财政年份:
    2022
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Continuing Grant
Development of micro thermal transport probe for heat management using quantum spin systems
使用量子自旋系统开发用于热管理的微型热传输探针
  • 批准号:
    22K03950
  • 财政年份:
    2022
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantum transport phenomena induced by topological spin textures
拓扑自旋纹理引起的量子输运现象
  • 批准号:
    21K13875
  • 财政年份:
    2021
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Spin transport phenomena induced by quantum geometric structure in topological superconductors
拓扑超导体中量子几何结构引起的自旋输运现象
  • 批准号:
    20K03860
  • 财政年份:
    2020
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Transient Kerr Microscopy System for Studying Spin Transport in Semiconducting Hybrid Perovskite Quantum Materials
用于研究半导体混合钙钛矿量子材料中自旋输运的瞬态克尔显微镜系统
  • 批准号:
    RTI-2020-00499
  • 财政年份:
    2019
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Research Tools and Instruments
Breaking the performance limit of spin transistors by using quantum transport
利用量子传输突破自旋晶体管的性能极限
  • 批准号:
    18H01492
  • 财政年份:
    2018
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Exotic excitations and anomalous transport phenomena in quantum spin liquids
量子自旋液体中的奇异激发和反常输运现象
  • 批准号:
    17K05517
  • 财政年份:
    2017
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantum spin transport in Rashba systems
Rashba 系统中的量子自旋输运
  • 批准号:
    15H06133
  • 财政年份:
    2015
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了