Transport in Quantum Systems

量子系统中的传输

基本信息

项目摘要

This award will fund research on disordered quantum matter, an interdisciplinary research area interlinking physics, computer science, and mathematics. Disorder is an inherited feature of any physical system, but the miniaturization of physical devices makes them especially sensitive to noise and imperfections. A longstanding goal of this project is to understand the behavior of materials that could play a crucial role in creating quantum computers robust to defects and noise. The principal investigator will develop an underlying mathematical theory that will allow for a better understanding of the properties of such materials, shed light on how to manipulate them more effectively, and harness disorder to enhance the stability of the desired outcomes. Progress in understanding the behavior of such systems will increase the scientific community's understanding of models in theoretical physics and applied mathematics. Students involved in this project will work alongside the PI and gain expertise in the area.The project will proceed through a program to build a self-contained, systematic transport theory in the many-body, disordered framework. The first goal of this project is to make substantial progress in understanding the time evolution of such systems, particularly the many-body localization phenomenon and its robustness to (time-dependent) perturbations. This step requires understanding the quasi-locality properties associated with this framework, which have so far been obtained only in the context of the gapped ground states associated with local Hamiltonians. The project's second goal is the analysis of the transport properties of disordered many-body Hamiltonians, particularly spin systems. It relies on constructing a many-body index theory that remains stable in a mobility gap region of the associated system and on the justification of Kubo's transport formulae for the linear response.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将资助无序量子物质的研究,这是一个将物理学、计算机科学和数学联系在一起的跨学科研究领域。无序是任何物理系统的遗传特征,但物理设备的小型化使它们对噪音和缺陷特别敏感。该项目的一个长期目标是了解材料的行为,这些材料可能在创造出对缺陷和噪声具有健壮性的量子计算机方面发挥关键作用。首席研究人员将开发一种基本的数学理论,使人们能够更好地了解这种材料的性质,阐明如何更有效地操纵它们,并利用无序来增强预期结果的稳定性。在理解这类系统的行为方面的进展将增加科学界对理论物理和应用数学模型的理解。参与这个项目的学生将与PI一起工作,并获得该领域的专业知识。该项目将通过一个项目继续进行,以在多体、无序的框架中建立一个自给自足的、系统的运输理论。这个项目的第一个目标是在理解这类系统的时间演化,特别是多体局部化现象及其对(依赖于时间的)扰动的稳健性方面取得实质性进展。这一步需要理解与这个框架相关的准局域性性质,到目前为止,这些性质只在与局域哈密顿量相关的有隙基态的背景下获得。该项目的第二个目标是分析无序多体哈密顿算符的输运性质,特别是自旋系统。它依赖于构建多体指数理论,该理论在相关系统的流动性间隙区域保持稳定,并依赖于久保的线性响应运输公式的合理性。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Elgart其他文献

Alexander Elgart的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Elgart', 18)}}的其他基金

Transport in Quantum Spin Systems
量子自旋系统中的传输
  • 批准号:
    1907435
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Early Career and Student Support for "Mathematical Physics at the Crossings" Conference
“十字路口的数学物理”会议的早期职业和学生支持
  • 批准号:
    1841860
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Quantum transport study of axion dynamics in magnetic topological systems
磁拓扑系统中轴子动力学的量子输运研究
  • 批准号:
    22KF0111
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Quantum transport and hydrodynamics in strongly interacting systems: Symmetries, Quantum criticality and Entanglement
强相互作用系统中的量子输运和流体动力学:对称性、量子临界性和纠缠
  • 批准号:
    RGPIN-2020-07070
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Development of micro thermal transport probe for heat management using quantum spin systems
使用量子自旋系统开发用于热管理的微型热传输探针
  • 批准号:
    22K03950
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantum transport and hydrodynamics in strongly interacting systems: Symmetries, Quantum criticality and Entanglement
强相互作用系统中的量子输运和流体动力学:对称性、量子临界性和纠缠
  • 批准号:
    RGPIN-2020-07070
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical studies on quantum transport and manipulation of nanoscale systems
纳米系统量子输运和操控的理论研究
  • 批准号:
    21F21022
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Quantum transport and hydrodynamics in strongly interacting systems: Symmetries, Quantum criticality and Entanglement
强相互作用系统中的量子输运和流体动力学:对称性、量子临界性和纠缠
  • 批准号:
    RGPIN-2020-07070
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Transport in Quantum Spin Systems
量子自旋系统中的传输
  • 批准号:
    1907435
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Market research of Quantum Random Number Generator-based encryption platform for Cooperative Intelligent Transport Systems (C-ITS)
基于量子随机数生成器的协作智能运输系统(C-ITS)加密平台的市场研究
  • 批准号:
    34998
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Collaborative R&D
Analysis of transport phenomena in topological materials using real-time evolution of quantum systems
利用量子系统的实时演化分析拓扑材料中的输运现象
  • 批准号:
    19K03739
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSF/DMR-BSF: Quantum transport of charge and heat in correlated electron systems
NSF/DMR-BSF:相关电子系统中电荷和热量的量子传输
  • 批准号:
    1742752
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了