Advancing Stochastic Analysis of Field-Scale Transport Parameters using Hydrogeophysics

利用水文地球物理学推进现场尺度输运参数的随机分析

基本信息

  • 批准号:
    1907555
  • 负责人:
  • 金额:
    $ 29.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-15 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Groundwater constitutes a significant component of fresh water supplies in the United States. With changing climate, the dependence on groundwater is only expected to grow, especially in areas with limited surface water supplies. Because of their susceptibility to contamination, assertive management and cleanup efforts of groundwater systems require proper understanding of how contaminants move in these systems. Field-scale prediction of contaminants transport in complex groundwater systems is a long-standing research challenge. This project combines numerical modeling of contaminant transport with geophysical methods to advance understanding and enhance the ability to monitor and predict field-scale contaminant transport in highly complex groundwater systems. The project also contributes to the development of a diverse scientific workforce and benefits society by supporting an early career faculty member and postdoctoral researcher, providing research opportunities to undergraduate students, engaging students from underrepresented groups in STEM, and exposing middle-school students to geoscience education and opportunities.Proper management of groundwater systems and mitigation of health risks posed by contaminated aquifers requires an understanding of field-scale solute migration, particularly small-scale transport processes in highly heterogeneous aquifers. The clasic advection-dispersion model, commonly used to predict solute migration, often fails to reproduce field measurements due to the lack of knowledge and uncertainty of solute transport parameters (STPs). Traditional well-based sampling methods employed to gain insights into field-scale transport parameters provide spatially limited information. Their invasive nature may also disturb the natural small-scale transport behavior that needs to be understood. Hydrogeophysics provides opportunities to rapidly characterize spatially continuous, field-scale solute plume migration for quantitative evaluation of transport parameters using minimally-invasive methods. Hydrogeophysical estimation requires prior information about the spatial distribution of the target solute plume for computational stability. The conventional prior constraints applied in hydrogeophysics, however, lack information about the physics of the target transport process (e.g., advection-dispersion) that is driving the evolution of the contaminant plume, resulting in inaccurate estimation of the transport parameters. Given the complex heterogeneity and uncertainty in hydrogeological systems, stochastic methods are well suited for solute transport prediction in these systems. Standard stochastic sampling methods can, however, become computationally intractable in spatially-distributed, high-dimensional hydrological problems. The goal of this project is to develop and test novel stochastic estimation strategies that: 1) incorporates prior physics-based constraints of the solute transport process (i.e., accounts for multiple scales of plume dispersion and complexity) to improve velocity, plume-dispersion, and mass estimations; and 2) performs stochastic estimation in the reduced-hydrologic-process parameter space to improve computational efficiency and enable field-scale characterization of small-scale transport processes in highly heterogeneous aquifers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地下水是美国淡水供应的重要组成部分。随着气候变化,对地下水的依赖预计只会增加,特别是在地表水供应有限的地区。由于它们对污染的敏感性,地下水系统的果断管理和清理工作需要正确理解污染物如何在这些系统中移动。复杂地下水系统中污染物运移的现场预测是一个长期存在的研究挑战。该项目将污染物运移的数值模拟与地球物理方法相结合,以提高对高度复杂的地下水系统中现场尺度污染物运移的监测和预测能力。该项目还通过支持早期职业教师和博士后研究人员,为本科生提供研究机会,吸引STEM中代表性不足的群体的学生,而暴露在中间-适当管理地下水系统和减轻受污染含水层造成的健康风险,了解现场规模的溶质迁移,特别是在高度异质含水层的小规模运输过程。 经典的对流-弥散模型,通常用于预测溶质运移,往往无法重现现场测量,由于缺乏知识和溶质运移参数(STPs)的不确定性。传统的井为基础的采样方法,用于深入了解现场规模的传输参数提供空间有限的信息。它们的入侵性质也可能扰乱需要了解的自然小规模迁移行为。水文物理学提供了机会,快速表征空间连续的,现场规模的溶质羽流迁移的定量评估的传输参数,使用微创方法。水文地球物理估计需要关于目标溶质羽流的空间分布的先验信息以保证计算的稳定性。然而,在水文物理学中应用的常规先验约束缺乏关于目标传输过程的物理学的信息(例如,对流-扩散),这是驱动污染物羽流的演变,导致不准确的估计传输参数。由于水文地质系统具有复杂的非均匀性和不确定性,随机方法非常适合于这些系统中的溶质运移预测。然而,标准的随机抽样方法在空间分布的高维水文问题中可能变得难以计算。该项目的目标是开发和测试新的随机估计策略,该策略:1)结合溶质运移过程的先前基于物理的约束(即,考虑到羽流扩散和复杂性的多个尺度),以改进速度、羽流扩散和质量估计;以及2)在简化的水文过程参数空间中执行随机估计,以提高计算效率,并实现小尺度水文过程的场尺度表征。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的学术价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Lowry其他文献

Citizenship, Ability, and Contribution
公民身份、能力和贡献
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1
  • 作者:
    D. DeVidi;Catherine Klausen;Christopher Lowry
  • 通讯作者:
    Christopher Lowry
Tracing Ainu and Pre-Ainu Cultural Continuity Through Cladistic Analysis of Faunal Assemblages
通过动物群落的分支分析追踪阿伊努和前阿伊努文化的连续性
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christopher Lowry
  • 通讯作者:
    Christopher Lowry
Effects of immunization with Mycobacterium vaccae ATCC 15483, a bacterium with anti-inflammatory, immunoregulatory and stress resilience properties, on high-fat/high-sugar “Western” diet-induced weight gain, adiposity, neuroinflammation, and behavior in adolescent male mice
  • DOI:
    10.1016/j.bbi.2024.01.165
  • 发表时间:
    2023-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Luke Desmond;Evan Holbrook;Tyler Akonom;Lamya'a Dawud;Brandon Marquart;Nathan Anderson;Lyanna Kessler;Elizabeth Hunter;Lucas Guerrero;Dennis Boateng;Barbara Stuart;Christopher Lowry
  • 通讯作者:
    Christopher Lowry
T2. THE INTERACTION BETWEEN THE GUT MICROBIOME AND HOST GENOME IN POSTTRAUMATIC STRESS DISORDER
创伤后应激障碍中肠道微生物组与宿主基因组之间的相互作用
  • DOI:
    10.1016/j.euroneuro.2023.08.292
  • 发表时间:
    2023-10-01
  • 期刊:
  • 影响因子:
    6.700
  • 作者:
    Sian Hemmings;Catharina Rust;Stefanie Malan-Muller;Patricia Swart;Christopher Lowry;PGC-PTSD Microbiome Workgroup;Soraya Seedat
  • 通讯作者:
    Soraya Seedat
Veteran Microbiome and the Applications for Those With TBI and Co-occurring Mental Health Conditions
  • DOI:
    10.1016/j.apmr.2018.08.074
  • 发表时间:
    2018-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew Hoisington;Christopher Lowry;Christopher Stamper;Jared Henize;Kelly Stearns-Yoder;Lisa Brenner
  • 通讯作者:
    Lisa Brenner

Christopher Lowry的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Lowry', 18)}}的其他基金

I-Corps: Soil-derived mycobacteria for the treatment of posttraumatic stress disorder (PTSD) and other anxiety disorders
I-Corps:土壤来源的分枝杆菌,用于治疗创伤后应激障碍 (PTSD) 和其他焦虑症
  • 批准号:
    2051920
  • 财政年份:
    2021
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Improving high performance super computer aquatic ecosystem models with the integration of real-time citizen science data
合作研究:ABI Innovation:通过集成实时公民科学数据改进高性能超级计算机水生生态系统模型
  • 批准号:
    1661324
  • 财政年份:
    2017
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Using Californias Drought To Analyze Fractured Groundwater Inputs To High Elevation Meadows
利用加利福尼亚州的干旱来分析高海拔草甸的破裂地下水输入
  • 批准号:
    1501520
  • 财政年份:
    2014
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
CAREER: Afferent Thermosensory Mechanisms and Social Behavior
职业:传入热感觉机制和社会行为
  • 批准号:
    0845550
  • 财政年份:
    2009
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: Novel Corticosteroid Actions on Neurotransmitter Function
合作研究:新型皮质类固醇对神经递质功能的作用
  • 批准号:
    0921969
  • 财政年份:
    2009
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
  • 批准号:
    11902320
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
  • 批准号:
    23K03139
  • 财政年份:
    2023
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spectral theory of Schrodinger forms and Stochastic analysis for weighted Markov processes
薛定谔形式的谱论和加权马尔可夫过程的随机分析
  • 批准号:
    23K03152
  • 财政年份:
    2023
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Macroscopic properties of discrete stochastic models and analysis of their scaling limits
离散随机模型的宏观性质及其标度极限分析
  • 批准号:
    23KK0050
  • 财政年份:
    2023
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Three Topics in Stochastic Analysis: Kyle's model, Systems of BSDEs and Superrough volatility
随机分析的三个主题:凯尔模型、倒向随机微分方程系统和超粗糙波动性
  • 批准号:
    2307729
  • 财政年份:
    2023
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Analysis of Stochastic Partial Differential Equations
随机偏微分方程的分析
  • 批准号:
    2245242
  • 财政年份:
    2023
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Continuing Grant
Conference: Workshop on Stochastic Analysis, Random Fields, and Applications
会议:随机分析、随机场和应用研讨会
  • 批准号:
    2309847
  • 财政年份:
    2023
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Conference: Frontiers in Stochastic Analysis
会议:随机分析前沿
  • 批准号:
    2247369
  • 财政年份:
    2023
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Applications of stochastic analysis to statistical inference for stationary and non-stationary Gaussian processes
随机分析在平稳和非平稳高斯过程统计推断中的应用
  • 批准号:
    2311306
  • 财政年份:
    2023
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Analysis of stochastic expression variation among plant individuals
植物个体间随机表达变异分析
  • 批准号:
    23K18156
  • 财政年份:
    2023
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Mathematical analysis of submodular set functions and its application to stochastic ranking model
子模集合函数的数学分析及其在随机排序模型中的应用
  • 批准号:
    22K03358
  • 财政年份:
    2022
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了