Structural Results in Floer Theory and Mirror Symmetry
弗洛尔理论和镜像对称的结构结果
基本信息
- 批准号:1907635
- 负责人:
- 金额:$ 22.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Symplectic geometry is an area broadly concerned with the global shape of physical systems, such as those tracking the possible positions and momenta of particles in a constrained configuration. Insights from mathematical physics have led to powerful tools, collectively called Floer theory, for extracting properties of such systems (for instance the number of periodic orbits associated to a system with given kinetic and potential energy); unfortunately the appearance of difficult differential equations makes these tools challenging to apply. This project seeks to simplify the study of Floer theory of a large class of spaces by developing systematic rules for computation (via e.g., cut and paste) and by establishing new relationships between different types of Floer theory. Using these, the project aims to solve open problems about the structure of Floer theory and find new applications to mirror symmetry (a remarkable geometric duality first arising in string theory) and the study of singularities (abrupt changes) in symplectic geometry. The PI will also train and encourage mathematics students through workshops, new course and seminar content, and judging of K-12 science fairs.This project aims to develop new structural results in Floer theory and mirror symmetry using input from (and with applications to) the study of singularities of various forms in symplectic geometry. In one direction, the project aims to show that wrapped Fukaya categories satisfy expected van-Kampen style locality properties, and deduce as a consequence axiomatic and sheaf-theoretic characterizions of Fukaya categories of Stein manifolds (using in part the singular structure of their Lagrangian skeleta). In a related direction, the project aims to geometrically calculate the Hochschild invariants of Fukaya categories associated to certain Landau-Ginzburg models (i.e., holomorphic functions), and deduce new applications to the study of singularities of such functions. The third and final direction is to understand the effect of hidden singularities (in the sense of having a singular mirror) on Fukaya categories, with computational and structural consequences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
辛几何是一个与物理系统的全局形状广泛相关的领域,例如那些跟踪受约束构型中粒子的可能位置和动量的物理系统。来自数学物理的见解导致了强大的工具,统称为Floer理论,用于提取此类系统的属性(例如,与给定动能和势能的系统相关的周期轨道的数量);不幸的是,困难的微分方程式的出现使这些工具的应用具有挑战性。该项目旨在通过制定系统的计算规则(例如,通过剪切和粘贴)以及通过在不同类型的Floer理论之间建立新的关系来简化对一大类空间的Floer理论的研究。利用这些,该项目旨在解决关于Floer理论结构的公开问题,并找到镜像对称性(一种最早出现在弦理论中的显著的几何对偶)和研究辛几何中的奇点(突变)的新应用。PI还将通过工作坊、新的课程和研讨会内容以及K-12科学博览会的评判来培训和鼓励数学学生。这个项目的目的是利用辛几何中各种形式的奇点研究的投入和应用来开发Floer理论和镜像对称的新结构结果。在一个方向上,该项目的目的是证明包裹的Fukaya范畴满足预期的van-Kampen型局部性性质,并由此推出Stein流形的Fukaya范畴的公理和层论特征(部分利用其拉格朗日骨架的奇异结构)。在一个相关的方向上,该项目旨在几何地计算与某些Landau-Ginzburg模型(即全纯函数)相关的Fukaya范畴的Hochschild不变量,并在研究这类函数的奇异性方面得出新的应用。第三个也是最后一个方向是了解隐藏的奇点(在有一面奇异的镜子的意义上)对Fukaya类别的影响,以及计算和结构上的结果。这一奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sectorial descent for wrapped Fukaya categories
- DOI:10.1090/jams/1035
- 发表时间:2018-09
- 期刊:
- 影响因子:3.9
- 作者:Sheel Ganatra;J. Pardon;V. Shende
- 通讯作者:Sheel Ganatra;J. Pardon;V. Shende
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sheel Ganatra其他文献
Symplectic cohomology and duality for the wrapped Fukaya category
- DOI:
- 发表时间:
2013-04 - 期刊:
- 影响因子:0
- 作者:
Sheel Ganatra - 通讯作者:
Sheel Ganatra
Cyclic homology, S1–equivariant Floer cohomology and Calabi–Yau structures
- DOI:
10.2140/gt.2023.27.3461 - 发表时间:
2019-12 - 期刊:
- 影响因子:0
- 作者:
Sheel Ganatra - 通讯作者:
Sheel Ganatra
Symplectic cohomology rings of affine varieties in the topological limit
拓扑极限下仿射簇的辛上同调环
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:2.2
- 作者:
Sheel Ganatra;Daniel Pomerleano - 通讯作者:
Daniel Pomerleano
Categorical non-properness in wrapped Floer theory
- DOI:
- 发表时间:
2021-04 - 期刊:
- 影响因子:0
- 作者:
Sheel Ganatra - 通讯作者:
Sheel Ganatra
Sheel Ganatra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sheel Ganatra', 18)}}的其他基金
CAREER: Fukaya Categories and Noncommutative Hodge Structures
职业:深谷范畴和非交换 Hodge 结构
- 批准号:
2048055 - 财政年份:2021
- 资助金额:
$ 22.8万 - 项目类别:
Continuing Grant
Relating Fukaya Categories Using Combinatorics, Operads, and Nonlinear Elliptic Partial Differential Equations
使用组合学、运算和非线性椭圆偏微分方程关联 Fukaya 类别
- 批准号:
2002137 - 财政年份:2019
- 资助金额:
$ 22.8万 - 项目类别:
Standard Grant
相似海外基金
Integrating Hamiltonian Effective Field Theory with Lattice QCD and Experimental Results to study Heavy Exotic Hadron Spectroscopy
哈密顿有效场论与晶格 QCD 和实验结果相结合,研究重奇异强子谱
- 批准号:
24K17055 - 财政年份:2024
- 资助金额:
$ 22.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Moral Experience of Families in the Context of Trisomy 13 and 18: Presenting the Results of a Scoping Review
13 号和 18 号三体症背景下家庭的道德体验:介绍范围界定审查的结果
- 批准号:
495166 - 财政年份:2023
- 资助金额:
$ 22.8万 - 项目类别:
Identifying strategies to reveal genetic results over the lifespan
确定揭示一生中遗传结果的策略
- 批准号:
10739918 - 财政年份:2023
- 资助金额:
$ 22.8万 - 项目类别:
FRAMINGHAM HEART STUDY - TASK AREA C - GENETIC RESULTS REPORTING
弗雷明汉心脏研究 - 任务领域 C - 基因结果报告
- 批准号:
10974185 - 财政年份:2023
- 资助金额:
$ 22.8万 - 项目类别:
Early intervention as a determinant of hearing aid benefit for age-related hearing loss: Results from longitudinal cohort studies
早期干预是助听器对年龄相关性听力损失有益的决定因素:纵向队列研究的结果
- 批准号:
10749385 - 财政年份:2023
- 资助金额:
$ 22.8万 - 项目类别:
Collaborative Research: Curating, digitizing and disseminating results from an unparalleled collection of fossil vertebrates from the Late Cretaceous of Madagascar
合作研究:整理、数字化和传播来自马达加斯加白垩纪晚期的无与伦比的脊椎动物化石收藏的结果
- 批准号:
2242717 - 财政年份:2023
- 资助金额:
$ 22.8万 - 项目类别:
Standard Grant
Explaining automated test agents and their test results
解释自动化测试代理及其测试结果
- 批准号:
23K11062 - 财政年份:2023
- 资助金额:
$ 22.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Association of D-dimers with Left Ventricular Hypertrophy and Clinical Outcomes in Mild to Moderate Aortic Stenosis: Results from the PROGRESSA Study
D-二聚体与左心室肥厚和轻中度主动脉瓣狭窄临床结果的关联:PROGRESSA 研究结果
- 批准号:
495409 - 财政年份:2023
- 资助金额:
$ 22.8万 - 项目类别:
revAIsor: Revise AI Solutions for Optimal Results
revAIsor:修改人工智能解决方案以获得最佳结果
- 批准号:
10075158 - 财政年份:2023
- 资助金额:
$ 22.8万 - 项目类别:
Grant for R&D
Harvesting Actionable Results for Learning and Instruction: A Novel Mixed Methods Approach to Extracting and Validating Information from Diagnostic Assessment
收获可操作的学习和教学结果:一种从诊断评估中提取和验证信息的新型混合方法
- 批准号:
2300382 - 财政年份:2023
- 资助金额:
$ 22.8万 - 项目类别:
Standard Grant